EFFECT OF T2DM ON INDUCING CHANGES IN VISFATIN LEVEL AND DETERIORATION IN CARDIAC FUNCTION

M.D THESIS PRESENTED BY

Marwa Abdeltawab Mohammed

Assistant lecturer Of physiology

(MB.BCH,MSC)

Faculty of Medicine ,Beni Sweif University

Under Supervision Of

Prof.Dr. Akef Khowailed

Professor of Physiology

Faculty of Medicine ,Cairo University

Dr.Mohammed Mansour

Dr.Dina Abdelfatah

Lecturer of Physiology

Assist. Professor Of Biochemistry

Faculty of Medicine, Cairo University

Faculty of Medicine ,Cairo University

Dr.Khalid Refaat

Lecturer Of Cardiology

Faculty Of Medicine ,Beni Sweif University

تأثير مرض السكري من النوع الثاني في إحداث تغيير في مستوى الفسفتين وتدهور في وظائف القلب

رسالة دكتوراة مقدمة من

مروة عبد التواب محمد

مدرس مساعد الفسيولوجي

كلية الطب البشري

جامعة بني سويف

تحت إشراف

أ.د عاكف خويلد

أستاذ الفسيولوجي

كلية الطب البشري

جامعة القاهرة

د.دينا عبد الفتاح

د.محمد منصور

أستاذ مساعد الكيمياء الحيوية

مدرس الفسيولوجي

كلية الطب البشري

كلية الطب البشري

جامعة القاهرة

جامعة القاهرة

د.خالد رفعت

مدرس القلب والأوعية الدموية

كلية الطب البشري

جامعة بني سويف

Acknowledgement

I would like to thank Dr. Ækef K howoiled for his greet advices and guides, he has a great experience in both science and life. I learnt a lot from him and I hope I will have a chance to learn more. I want also to thank Dr. Mohammed Mansour for his help and greet efforts in this study. Ælso I want to thank Dr. dina Æbdelfatah for her help in the part concerning with biochemistry in this study. Finally I want to thank Dr. K halid refaat for his useful guides.

INDEX

	Page Number
-List of figures.	i
-List of tables.	V
-Abreviations.	vii
-Abstract	1
-Chapter (1)Diabetes Mellitus.	2
-Chapter (2)Cardiac complications	22
-Chapter (3)Adipokines	35
-Materials & Methods.	52
-Results.	82
-Disscusion.	106
-Summary.	123
-References	125
الملخص العربي-	174

List of Figures

Pa	age number
-Figure 1:illustration showing diabetic retinopathy	18
-Figure 2:Image of the fundus showing scatter laser surgery	19
for diabetic retinopaty	
-Figure 3: Nicotinamide phosphoribosyltransferase	3 9
(Nampt) enzymatic activity.	
-Figure4: Diagram summarizing the main reported actions of	f 44
visfatin/Nampt/PBEF in the cardiovascular system.	
-Figure 5: Main signaling pathways that mediate visfatin	46
induced endothelial cell proliferation and migration	on.
- Figure 6 : Standard curve for cholesterol concentration calculation.	59
- Figure 7 :Standard curve for HDL concentration	62
calculation.	
- Figure 8: Triglyceride Standard Curve.	68
-Figure 9 :Standard curve for visfatin.	78
-Figure 10: Comparison of serum glucose between diabetic	82
and control groups.	
-Figure 11: Comparison of HBA1C between diabetic and	83

control groups.

Figure 12: Comparison of BMI between diabetic and	84
control groups	
-Figure 13: Comparison of SBP between diabetic and	84
control groups.	
-Figure 14: Comparison of DBP between diabetic and	85
control groups.	
-Figure 15: Comparison of serum total cholesterol level	86
between diabetic and control groups.	
-Figure 16: Comparison of serum TG level	86
between diabetic and control groups.	
-Figure 17: Comparison of serum LDL level	87
between diabetic and control groups.	
-Figure 18: Comparison of serum HDL level	87
between diabetic and control groups	
- Figure (19): Comparison of serum visfatin level	88
between diabetic and control group.	
- Figure (20): Positive correlation between visfatin and	90
serum glucose.	
- Figure (21): Positive correlation between visfatin and	90
HRA1C	

- Figure (22): Positive correlation between vistatin	91
and total cholesterol.	
- Figure (23): Positive correlation between visfatin	91
and TG	
-Figure (24): Positive correlation between visfatin	92
and LDL	
- Figure (25): Negative correlation between visfatin	92
and HDL	
- Figure (26): Positive correlation between visfatin	93
and age.	
- Figure (27): Positive correlation between visfatin	93
and BMI.	
- Figure (28): Positive correlation between visfatin	94
and SBP.	
- Figure (29): Positive correlation between visfatin	94
and DBP.	
- Figure (30): Positive correlation between visfatin	95
and EF%.	

- Figure (31):Comparison of EF% between diabetic	96
and control groups.	
- Figure (32): Negative correlation between EF%	97
and glucose.	
- Figure (33): Negative correlation between EF%	97
and HBA1C.	
- Figure (34): Negative correlation between EF%	98
and total cholesterol.	
- Figure (35): Negative correlation between EF%	98
and TG.	
- Figure (36): Negative correlation between EF%	99
and LDL.	
- Figure (37): Positive correlation between EF%	99
and HDL.	
- Figure (38): Negative correlation between EF%	100
and BMI.	
- Figure (39): Negative correlation between EF%	100
and DBP.	
- Figure (40): Negative correlation between EF%	101
and SBP.	

List of tables

	Page number
-Table 1:Measurement of serum glucose.	55
-Table 2:Diluation of Cholesterol Standard.	58
- Table 3:Contents of HDL kit.	61
-Table 4::Preparation of Triglycerides Standards.	65
-Table 5: Preparation of reaction mixture.	67
-Table 6: Comparison of serum glucose and HBA1c	82
levels between diabetic and control groups.	
Table 7: Comparison of BMI &SBP&DBP between diabetic	83
and control groups	
-Table 8: Comparison of serum total cholesterol&TG&LDL	85
and HDL levels between diabetic and control groups	S.
- Table 9:Comparison of serum visfatin level between	88
diabetic and control groups.	
- Table (10a,b): Correlation between visfatin and other	89
parameters.	
- Table (11):Comparison of EF% between diabetic and	95
control groups.	
- Table (12a,b):Correlation between EF and other parameters	s. 96

-Table (13a):Summarization of statistical values for	102
control females and diabetic females	
-Table (13b):Summarization of statistical values for	102
control males and diabetic males	
- Table (14):Summerization of original values of	103
age,sex,BMI,BP,EF% between control and diabetic gr	roups.

- -Table (15):Summerization of original biochemical values 104 of visfatin,serum glucose,HBA1C for control and diabetic groups
- Table (16):Summerization of original biochemical values of 105 total cholesterol,TG,LDL and HDL for control and diabetic groups

Abbreviations

ADA American diabetes association

ADMA Asymmetric dimethylarginine

AGEs Advanced glycation end products

AVP Arginine vasopressin

BMI Body mass index

CAD Coronary artery disease

CAN Cardiac autonomic neuropathy

CD Cluster of differentiation

CETP Cholesterol ester transfer protein

CHD Coronary heart disease

CVD Cardio vascular diseases

DAN Diabetic autonomic neuropathy

DDAH Dimethylarginine dimethylaminohydrolase

DK A Diabetic ketoacidosis

DM Diabetes melitus

DSPN Distal symmetric polyneuropathy

EASD European Association for the Study of

diabetes

eNOS Endothelial nitric oxide synthase

ERK Extracellular signal-regulated kinase

FGF Fibroblast growth factor

GADA Glutamic acid decarboxylase

autoantibodies

GDM Gestational diabetes mellitus

HAAF Hypoglycemia-associated autonomic

failure

HBA1c Glycated hemoglobin levels

HF Heart failure

HIF Hypoxia-inducible factor

HNF1B Hepatocyte nuclear factor 1 homeobox B

HNS Hyperosmolar nonketotic state

HSL Hormone-sensitive lipase

HUVEC Human umbilical vein endothelial

cell cultures

IA2 Insulinoma-associated2

ICA Islet cell autoantibodies

IDF International Diabetes Federation

IGF1 Insulin growth factor-1

IL Interleukin

iNOS Inducible nitric oxide synthase

LPL Lipoprotein lipase

MAPK Mitogen-activated protein kinases

MCP Monocyte chemottractant protein

MHC Major histocompatibility complex

MODY Maturity onset diabetes of the young

MMP Matrix metalloproteinases

mPTP Mitochondrial permeability transition pore

NAD Nicotinamide adenine dinucleotide

Nampt Nicotinamide phosphoribosyltransferase

NF Nuclear factor

NIDDM Noninsulin-dependent diabetes mellitus

NMN Nicotinamide mononucleotide

NO Nitric oxide

NPDR Non proliferative diabetic retinopathy

PAI-1 Plasminogen activator inhibitor 1

PARP Poly(ADP ribose) polymerase

PBEF Pre-B-cell colony-enhancing factor

PI3K Phosphatidylinositol 3-kinase

PKC Protein kinase c

ROS Reactive oxygen species

SCF Stem cell factor

STAT Signal transducer and activator of transcription

SA-HRP Streptavidin-horseradish peroxidase

TCF7L2 Transcription factor7 like 2

T2D Type 2 diabetes

TIMP Tissue inhibitors of MMP

TNF α Tumor necrosis factor α

VEGF Vascular endothelial cell growth factor

VSMC Vascular smooth muscle cell

ZnT8 Zinc transporter8

Abstract

Background:Diabetes melitus is one of the most nutritional disordes associated with cardiovascular diseases. Visfatin is a new adipocytokine which is largely secreted by visceral adipose tissue and its effects in the development of diabetes and inflammatory reactions are similar to insulin. It acts synergistically with insulin in increasing glucose uptake, stimulating glucose transfer to the muscle and adipose tissue.

Methods:Glucose ,lipid profiles, visfatin ,ejection fraction were measured for 31 diabetics and 20 healthy people using usual biochemical methods , echocardiography for ejection fraction and sphygmomanometer for measurement of arterial blood pressure .

Results: The mean of body mass index, visfatin, total cholesterol, triacylglycerols, LDL-C and the fasting blood sugar levels, arterial blood pressure were highly significant in the diabetics as compared to those in the controls, whilethe mean HDL-C concentration and ejection fraction were significantly lower in diabetics than in controls.

Conclusion: High TC,TG,LDL,arterial blood pressure and decrease EF consider as an indicator that DM is properly associated with dyslipidemia and has high risk incidence of cardiovascular diseases, while high visfatin level in diabetics may give an idea about the role of visfatin in pathogenesis of DM.

Key words: Diabetes melitus, visfatin, lipid profiles, ejection fraction.