

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠ المنافلات ال

بعض الوثائـــق الاصلبــة تالفـة

بالرسالة صفحات لم ترد بالاصل

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

CONTAMINANTS DIFFUSION FROM IRRIGATION WATER MANAGED BY OPTIMIZATION TECHNIQUE

Ву

Ayman Abd El-Sattar Mokhtar Ahmed Nassar (M.Sc. Civil Engineer - Ain Shams University)

A thesis submitted for the fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CIVIL ENGINEERING

Supervised by

Prof. Dr. Mohammed El-Niazi Hammad

Irrigation and Hydraulics Dept.,
Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Ali Mohammed Talaat

Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Mohammed Mohammed Nour El-Din

Irrigation and Hydraulics Dept.,
Faculty of Engineering, Ain Shams University, Cairo, Egypt

rede

Cairo, Egypt 2000

EXAMINERS COMMITTEE

Signature

Prof. Dr. Tahany Fahim Youssef
Irrigation and Hydraulics
Faculty of Engineering - Helwan University

The The

Prof. Dr. Sameh Dawood Armanious
Irrigation and Hydraulics Dept.
Faculty of Engineering - Ain Shams University

___{

Prof. Dr. Mohammed El-Niazi Hammad Irrigation and Hydraulics Dept. Faculty of Engineering - Ain Shams University

Prof. Dr. Mohammed Mohammed Nour El-Din Irrigation and Hydraulics Dept.

Faculty of Engineering - Ain Shams University

Chos of the second

Date: 22/3/2000

.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Civil Engineering, Irrigation and Hydraulics.

The work included in this thesis was carried out by the author in the Faculty of Engineering, Ain Shams University, Cairo, Egypt and Leichtweiss Institut für Wasserbau (LWI), Technischen Universität Carolo-Wilhelmina zu Braunschweig, Germany.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute.

Reprints from this thesis may be made on conditions that the full title of the thesis, name of author, page reference and the date of publication are given.

Date:

/ / 2000

Name: Ayman A. Nassar

Signature: 6

ACKNOWLEDGMENTS

My special appreciation and thanks to Prof. Dr. Ing. Ulrich Maniak, Leichtweiss Institut für Wasserbau, TU Braunschweig for his valuable support, positive critics and his advice throughout this work.

I am deeply grateful to Prof. Dr. Mohammed El-Niazi Hammad, Faculty of Engineering, Ain Shams University for his kind guidance and useful suggestions.

I wish to express my deep gratitude to Prof. Dr. Ali Mohammed Talaat and Prof. Dr. Mohammed Nour El-Din, Faculty of Engineering, Ain Shams University for their cooperation and help.

Special acknowledgments are extended to both of Dipl.-Ing. Dieter Seeger and Dipl. Geogr. Gerhard Riedel, Leichtweiss Institut für Wasserbau, TU Braunschweig for their generous cooperation.

I am deeply thankful to Dr. Michael R. Bussieck and Dipl.-Math. Thomas Lindner, Institut für Angewandte Mathematik, TU Braunschweig who devoted their time and effort through performance of this work.

I am very grateful to Prof. Dr. Ahmed Dardir, EMISAL company for providing the necessary facilities during the field investigations. This work would be probably not completed in this form without his support and help.

Special thanks for Prof. Dr. S. Emara, Assiyut University, Mr. Khairy Fergany, Fayoum Governorate, Eng. Samir Yaacob, Irrigation Ministry and Mrs Ragaa Hussein, Fayoum Irrigation Dept. for their cooperation.

I would like also to thank every one help me or advise me especially my parents for their sacrifices and moral support.

Ayman A. Nassar

VITA

Name: Ayman Abd El-Sattar Mokhtar Ahmed Nassar

Date of Birth: 02.02.1970
Place of Birth: Cairo, Egypt

Present Position: Assistant Lecturer, Irrigation and Hydraulics Department,

Faculty of Engineering, Ain Shams University, Egypt.

Education:

09.1975-06.1980 Primary School 09.1980-06.1983 Preparatory School

09.1983-07.1986 Secondary School

Degrees Awarded:

09.1986-06.1991 B.Sc. in Civil Engineering, Faculty of Engineering, Ain

Shams University

10.1991-10.1994 M.Sc. in Civil Engineering, Faculty of Engineering, Ain

Shams University

Date: / / 2000

Name: Ayman A. Nassar

Signature: 6

ABSTRACT

This study is motivated by the increase of the water salinity in Qaroun lake and the soil salinity in Fayoum basin. Fayoum basin is an agricultural land receives its water from the Nile river. The actual crops in Fayoum suffer from water stress due to the poor consonance between the water supply and the crops requirements. The Fayoum drainage water flows to Qaroun lake and Wadi Rayan lakes where it evaporates leaving salts. The high water salinity reduced the fishing and the tourism activities in the basin. The non controlled drainage water increases the lake water level causing soil problems. Wadi Rayan lakes are used recently as bypass to deliver a suitable water volume to Qaroun lake. The rest drainage water flows to wadi Rayan lakes.

This study comprises a comprehensive simulation of water and salts behavior through a development of a numerical optimization model. The used optimization technique is linear programming, which determines the absolute optimum solution and not a local one.

The present work aims to determine a suitable crops distribution in Fayoum basin to result a specified drainage water distribution. This drainage water results minimum salt load and allowable water levels in Qaroun and Wadi Rayan lakes. Two different cases are studied considering the water supply. The maximum and minimum capacities of the water channels are concerned.

The system is described and discussed including the different parameters in chapter two. The problems are analyzed with the previous solutions in chapter three. The theoretical approach is estimated in chapter four. Chapter five describes and formulates the developed model. The results are analyzed and verified in chapter six.

KEY WORDS:

Fayoum - Optimization - Qaroun - Water Balance - Salt Balance

TABLE OF CONTENTS

List of Figures
List of Tables xi
List of Symbols xii
CHAPTER 1: INTRODUCTION
CHAPTER 2: SYSTEM APPROACH
2.1 Geography and Geology
2.2 Climate Characteristics
2.3 Soil
2.4 Ground Water
2.5 Agriculture in Fayoum
2.5.1 Cultivated Area
2.5.2 Crop Pattern
2.5.3 Crop Calender
2.5.4 Agricultural Soil Pollution
2.6 Irrigation in Fayoum
2.6.1 Irrigation and Drainage Systems
2.6.2 Irrigation Supply
2.7 Domestic and Industrial Water
2.8 Qaroun Lake
2.9 Wadi Rayan Lakes
CHAPTER 3: PROBLEM ANALYSIS
3.1 Problem Definition
3.1.1 Water Distribution Over the Area
3.1.2 Water Distribution Over Time
3.2 Problem Impacts
3.3 Problem Limiting Strategies
3.4 Strategies Influence
—

CHAPTER 6: RESULTS AND ANALYSIS	
6.1 Model Verification	95
6.1.1 Reference Crop Evapotranspiration	95
6.1.2 Crops Water Requirements	96
6.1.3 Crops Yields	98
6.1.4 Cultivated Area	99
6.2 Current Crop Calender Evaluation	100
6.3 Model Calibration	104
6.4 Effect of the Objective Functions	106
6.5 Evaluation of the Irrigation Water to the Fayoum Basin	117
6.6 The Effect of the EMISAL Factory	119
CHAPTER 7: Conclusions and Recommendations	
7.1 Summary	120
7.2 Conclusions	120
7.3 Advantages of the FAWO Model	122
7.4 Limitations of the FAWO Model	122
7.5 Model Requirements	123
7.6 Numerical Example	124
7.7 Recommendations	128
7.8 Scope for Further Studies	128
REFERENCES	129
APPENDIX (A)	135

LIST OF FIGURES

Figure (1.1)	Location of the Study Area	. 1
Figure (2.1)	Fayoum Depression	. 4
Figure (2.2)	Contour Lines in Fayoum Depression	. 4
Figure (2.3)	Fayoum Topography	. 5
Figure (2.4)	Temperature Variations in Fayoum Depression	. 6
Figure (2.5)	Precipitation in Fayoum Depression	. 6
Figure (2.6)	Wind Speed in Fayoum Depression	. 7
Figure (2.7)	Relative Humidity in Fayoum Depression	. 7
Figure (2.8)	Solar Radiation & Sunshine Hours in Fayoum Basin	. 8
Figure (2.9)	Soil Classification in Fayoum (FAO 1966)	. 9
Figure (2.10)	Soil Classification in Fayoum (Hamdy 1983)	. 9
Figure (2.11)	Cultivated Area in Fayoum Depression	12
Figure (2.12)	Reclamation in Fayoum	12
Figure (2.13)	Crop Pattern in Fayoum Basin in 1990	14
Figure (2.14)	Water Intake from Nile River to Fayoum Depression	19
Figure (2.15)	Irrigation Canal System in Fayoum	20
Figure (2.16)	Drainage System in Fayoum	20
Figure (2.17)	Irrigation Supplies in Fayoum Basin (1970-1990)	21
Figure (2.18)	Command Area of Main Canals in Fayoum in 1991	21
Figure (2.19)	Population Distribution in Fayoum Basin	22
Figure (2.20)	Population in Fayoum Basin	23
Figure (2.21)	Water Levels in Qaroun Lake (1880-1990)	24
Figure (2.22)	Water Evaporation from Qaroun Lake	26
Figure (3.1)	Locations of the Main Control Sections in Fayoum	27
Figure (3.2)	Water Needs and Supplies for Main Control Sections	28
Figure (3.3)	Irrigation Efficiencies for Control Sections	28
Figure (3.4)	Water Supply and Requirements in Fayoum (1983-1986)	29
Figure (3.5)	Water Levels and Salinities of Qaroun Lake (1900-2050) \dots	30
Figure (3.6)	Fish Production (1980-1990)	32
Figure (3.7)	Salinity & Fish Production in Qaroun Lake	32

Figure (3.8)	Agricultural Land Distribution	33
Figure (3.9)	Salinity & Fish Production in Qaroun Lake	34
Figure (3.10)	Soil Drainage Conditions in Fayoum	34
Figure (3.11)	Drainage Water Salinity and Required Reuse Water	36
Figure (3.12)	Wadi Rayan Bypass	37
Figure (3.13)	Qaroun Lake Flushing	38
Figure (3.14)	Problems and Solutions	40
Figure (4.1)	Main Parameters of the Water Systems in Fayoum	42
Figure (4.2)	Water Cycle in Fayoum Depression	43
Figure (4.3)	System Partitions	46
Figure (4.4)	Time Steps in the Developed Model	46
Figure (4.5)	Water Flow in Fayoum Basin	48
Figure (4.6)	Water Flow in the Plot Area	50
Figure (4.7)	Water Balance for a District	51
Figure (4.8)	Command Area of Each District	56
Figure (4.9)	Command Area of the Control Sections	56
Figure (4.10)	Water Flow Distribution with the Time for a District	57
Figure (4.11)	Land Use Scheme in Fayoum	58
Figure (4.12)	Vegetables and Orchards in Fayoum Basin	59
Figure (4.13)	Crop Coefficient Variation with the Time	60
Figure (4.14)	Linear and Non Linear Optimization Problems	66
Figure (5.1)	Effect of One Decade Change on the Climatic Parameters	72
Figure (5.2)	Array of Dimensions	73
Figure (5.3)	Model Variables	76
Figure (5.4)	Model Structure	77
Figure (5.5)	Calculations Flow in Pre Processing Stage	78
Figure (5.6)	Land Use in Fayoum Depression	79
Figure (5.7)	Flow Chart of the FAWO Model	83
Figure (6.1)	Verification of ET _o in the Fayoum Basin	96
Figure (6.2)	Verification of the Crops Needs in Fayoum	97
Figure (6.3)	Verification of the Crops Yields in Fayoum	98
Figure (6.4)	Verification of Gross and Net Area in Fayoum Basin	99