# Treatment of idiopathic asthenozoospermia and oligoasthenozoospermia with Alpha lipoic acid: a placebo-controlled, cross over study.

Thesis

Submitted for partial fulfillment of the master degree (M.sc) Dermatology, Andrology & S.T.Ds

By:

### Hala Mohamed Amin El-sarnagawy

(M.B.,B.ch.)

**Tanta University** 

#### **Supervisors**

#### Prof. Dr. Hosni Ahmed Awad

Professor of Andrology, sexology & STDs
Faculty of medicine
Cairo University

#### Prof. Dr. Taha Abd El-Naser Mohamed

Professor of Andrology, sexology& STDs

Faculty of medicine

Cairo University

#### Prof. Dr. Yasser Ibrahim El-Khayat

Assistant Professor of Andrology, sexology & STDs

Faculty of medicine

Cairo University

Faculty of medicine Cairo University 2015

# Acknowledgements

Thanks at first "for Allah" and forever. Thanks for what Allah gave and prohibited, for granting me the power to proceed and to accomplish this work.

I would like to express my endless gratitude and appreciation to **Prof. Dr. Hosni Ahmed Awad**, Professor of Andrology, sexology & STDs, Faculty of Medicine - Cairo University for his guidance and support throughout this work.

I am greatly honored to express my sincere appreciation to **Prof. Dr. Taha Abd El-Naser Mohamed,** Professor of Andrology, sexology & STDs, Faculty of Medicine - Cairo University, for devoting part of his precious time to help and guide me through this work and for his continuous help and kind supervision.

I am greatly honored to work under supervision of **Prof. Dr. Yasser Elkhyat,** Assistant Professor of Andrology, sexology&STDs, Faculty of Medicine - Cairo University, who provided me a lot of help & encouragement throughout this work.

I am grateful to **Dr. Sahar Yassen** for her assistance in statistical elaboration of the data.

I would like to acknowledge my profound gratitude to my **Mother & family** who guided me not only through my career but also through life.

I am really grateful to my **husband & my children** for their support, patience and encouragement.

## **List of Contents**

| * Introduction                               | 1  |
|----------------------------------------------|----|
| Aim of the Work                              | 3  |
| Review of Literature                         |    |
| Chapter (1): Asthenozoospermia               | 4  |
| - Semen analysis                             | 5  |
| - Physiology of male reproduction            | 7  |
| - Causes of asthenozoospermia                | 12 |
| - Treatment of asthenozoospermia             | 32 |
| Chapter II: Computer assisted semen analysis | 41 |
| ➤ An idea about how CASA works               | 43 |
| Uses of CASA to assess sperm motility        | 46 |
| Use of CASA to estimate sperm concentration  | 49 |
| Computer-aided sperm morphometric assessment | 50 |
| Advantages                                   | 52 |
| Disadvantages of CASA                        | 52 |
| Chapter III: Alpha lipoic acid               | 54 |
| > Pharmacokinetics                           | 54 |
| ➤ Forms and Uses                             | 58 |

| Free radicals and oxidative stress |                      | 59  |
|------------------------------------|----------------------|-----|
| > Dosage                           |                      | 72  |
| *                                  | Patients and Methods | 74  |
| *                                  | Results              | 82  |
| *                                  | Discussion           | 93  |
| *                                  | Recommendations      | 100 |
| *                                  | Summary              | 101 |
| *                                  | References           | 103 |
| *                                  | Appendix             | 123 |
| *                                  | Protocol             | 127 |
| *                                  | Arabic summary       | 135 |

## List of Abbreviations

ALA alpha lipoic acid

ALH Amplitude lateral head displacement

ART assisted reproductive techniques

ATP adenosine triphosphate

AZF azoospermia factor

AZS asthenozospermia

BCF Beat-cross frequency (Hz)

CAD coronary artery disease

cAMP cyclic adenosine monophosphate

CASA computer assisted semen analysis

CASMA computer-aided sperm morphometric

Assessment

CFTR cystic fibrosis transmembrane conductance

regulator

C-max concentration maximum

CRLA controlled release alpha lipoic acid

DEPs differentially expressed proteins

DHLA dihydrolipoic acid

DMSA dimercaptosuccinic acid

FSH follicle stimulating hormone

G3PD glyceraldehyde- 3-phosphate dehydrogenase

**GSH-Px** glutathione peroxidase

IBT Immuno beed test

IVOS Integrated video optical system

KS kartagener syndrome

LH leutinizing hormone

LIN Linearity

MAD Mean angular displacement (degrees)

MAGI male accessory gland infection

NO nitric oxide

NOS nitric oxide synthase

NTSC National Television Standards Committee

standard

ODAs outer dynin arms

OSF oral submucous fibrosis

PAL phase alternating line

PCD primar ciliary dyskinesia

PCOs polycystic ovary syndrome

PDH pyruvate dehydrogenase

PRM1 protamine 1

PRM2 protamine 2

R-ALA R lipoic acid

ROS reactive oxygen species

S-ALA S lipoic acid

SFA Seminal fluid analysis

Se Selenium

SNPs Single-nucleotide polymorphisms

**SQA-V** Sperm Quality Analyzer

STR Straightness

TNF tumor necrosis factor

TRP transient receptor potential

VAP The average path velocity

VCL The curvilinear velocity

VSL The straight line velocity

WHO world health organization

WOB Wobble

## List of Tables

| Table                                                                                                         | Page |
|---------------------------------------------------------------------------------------------------------------|------|
| Table (1): Categorization and management of oligoazoospermia by endocrine profile                             | 12   |
| Table (2): Age, smoking & duration of infertility of both groups.                                             | 83   |
| Table (3): Comparison between pretreatment semen parameters in both groups (count, motility &abnormal forms   | 84   |
| Table (4); count, abnormal forms for group I at m0, m1, m2.                                                   | 85   |
| Table (5): Progressive & total motility for group I at m0, m1, m2                                             | 85   |
| Table (6): CASA motility parameters for group I at m0, m1, m2                                                 | 86   |
| Table (7): count, abnormal forms for group II at m0, m1, m2.                                                  | 87   |
| Table (8): Progressive & total motility for group II at m0, m1, m2                                            | 87   |
| Table (9): CASA motility for group II at m0, m1, m2                                                           | 88   |
| Table (10): Sperm count & abnormal forms after the end of placebo treatment; m1 in group II and m2 in group I | 89   |
| Table (11): Progressive & total motility after the end of placebo                                             | 89   |
| treatment; m1 in group II and m2 in group I:motility).                                                        |      |

| Table (12): CASA motility parameters after the end of placebo treatment; m1 in group II and m2 in group I             |    |
|-----------------------------------------------------------------------------------------------------------------------|----|
| Table (13): Sperm count & abnormal forms after the end of the active drug treatment; m1 in group I and m2 in group II | 90 |
| Table (14): Progressive & total motility after the end of the active drug treatment; m1 in group I and m2 in group II | 91 |
| Table (15): CASA motility parameters after the end of the active drug treatment; m1 in group I and m2 in group II     | 91 |
| Table (16): Comparison between pregnancies occurred in both groups at m <sub>1</sub> & m <sub>2</sub> of the study    | 92 |
| Table (17): DROPOUT CASES AT m <sub>2</sub> ;                                                                         | 93 |

# **List of Figures**

| Figure                                                                                                                          |    |
|---------------------------------------------------------------------------------------------------------------------------------|----|
| Figure (1): Diagnostic evaluation of male infertility                                                                           |    |
| Figure (2): Sperm tail ultrastructure                                                                                           |    |
| Figure (3): Standard terminology for variables measured by CASA systems                                                         | 49 |
| Figure (4): Sperm morphology                                                                                                    | 51 |
| Figure (5): Schematic drawings of some abnormal forms of human spermatozoa                                                      | 52 |
| Figure (6): chemical structure of ALA &DHLA.                                                                                    |    |
| Figure (7):selected example of oxygen free radical.                                                                             |    |
| Figure (8): potential impact of oxidative stress in diabetic &the prediabetic                                                   | 62 |
| Figure (9): Assosciation of increased oxidative stress &mitochondrial dysfunction with aging,diabetes &coronary artery disease. | 68 |
| Figure (10) :Dimensions on CASA                                                                                                 | 80 |

## **ABSTRACT**

In the first section of the study 60 patients complaining of infertility, with the chief etiology is idiopathic asthenozoospermia (either isolated or associated with oligozoospermia) group I received 600 mg/day of alpha lipoic acid as an antioxidant (Alpha lipoic acids were selected for this purpose for their efficient free radical scavenging properties, and solubility in lipid and aqueous phases.

ALA does not cause a major shift of pH into acidic regions, because the acid is categorized as a weak acid. Recent findings have also indicated that ALA is able to enter the Krebs cycle, thus assisting in the production of ATP, which is required in viable sperm.), while group II received placebo for 3 months duration, and semen was assessed monthly using CASA.

The study had been conducted in a double blind, placebo controlled; after wash out period for 3 months, the crossover section of the study started by 41 patients. All the 3 main semen parameters (count, motility &abnormal forms) monitored and compared for every patient and between both groups pretreatment, after 3<sup>rd</sup> month and after the second section.

The results revealed improvement with active drug intake regarding total motility (group I), after cross over section placebo improved both progressive & total motility.

While group II received placebo; there was improvement in count, progressive & total motility, but when active drug was taken for 3 months later, there was no more improvement in the cross over section and all the results regressed.

<u>Conclusion:</u> From the results of this study, alpha lipoic acid adds no more than placebo in idiopathic asthenoozospermia. We recommend further study on larger group of patients to reach final conclusions.

**<u>Key words:</u>** Asthenozoospermia - Alpha lipoic acid - Antioxidants - CASA.

## INTRODUCTION

Infertility is an important human health problem that affects ~15% of couples worldwide (Infertility touches 1 in 6 couples), and the underlying cause in half of these cases can be traced to men (**Flaherty**, **2014**).

The infertile population has been increasing over the past few decades. However, treatment efficacy is poor because the underlying causes are unknown in 40-50% of cases (**Kretser & Baker**, **1999**).

Oxidative stress is a common feature of compromising factors such as environmental pollutants, chemicals, drugs, smoke, toxins, radiation, and diseases related to infertility (**Smith et al, 2006**). In such conditions, vital cell components, such as proteins, lipids, and DNA, are oxidized (**Halliwell et al, 2007**).

Reactive oxygen species (ROS) - mediated damage to sperm is a significant contributing factor in 30-80% of infertile men (**Agarwal et al, 2006**), DNA fragmentation and oxidation of bases, low mitochondrial membrane potential (**Gallon et al, 2006**).

The oxidative stress, a condition resulting of an excessive production of ROS and/or a decrease in the antioxidant defense system, may cause serious cell injury and even cell death (Halliwell et al, 2007).