posterior vertebral column resection in complex spinal disorders

A Thesis Submitted For Partial Fulfillment of M.D. Degree Of Orthopaedic Surgery

By

Mohammed Ali Ibrahim Abd El Latif Hussein

M.B.B.Ch

M.Sc. of Orthopaedic Surgery Faculty of Medicine- Ain Shams University

Supervised by

Prof. Dr. Mohamed Abd-El Salam Wafa

Professor of Orthopaedic Surgery Ain Shams University

Dr.Ahmed M. Al Badrawi

Assistant Professor of Orthopaedic Surgery Ain Shams University

Dr. Hany Nabil El Zahlawy

Lecturer of Orthopaedic Surgery Ain Shams University

Faculty of Medicine
Ain Shams University
2017

First of all thanks to Allah to whom I relate any success in achieving any work in my life.

I would like to express my sincere gratitude to **Prof. Dr.**Mohamed Abd-El Salam Wafa, for his kind supervision, valuable advice and unlimited help in providing all the facilities for this work.

I would like to express my great appreciation to Ass. Prof. Dr. Ahmed M. Al Badrawi, for his kind supervision, continuous help and the great hard work that helped to finalize this work

I am heartily thankful to my supervisor **Dr. Hany Nabil El Zahlawy,** for his, continuous support and encouragement throughout this work.

Special and great thanks to my big brothers **Dr. Fady Micheal Fahmy and Dr. Mohamed zyan** for their help in fulfillment of the thesis cases.

Mohammed Ali Ibrahim Hussein

List of Content

List of Content
List of AbbreviationsI
List of FiguresIV
List of TablesX
Introduction 1
Aim of the Work 2
Review of literature
Chapter (1):Introduction3
Chapter (2): Sagittal balance 17
Chapter (3): Relevant Anatomy and Biomechanics of Implants 30
Chapter (4): Biomechanics - 37
Chapter (5): Evaluation of deformity patient 55
Chapter (6): Surgical Management of Kyphosis 75
Chapter (7): Spinal Osteotomies and Vertebral Column Resection 83
Patients and methods108
Results 138
Case Presentation 153
Discussion 192 -
Summary 211 -
Conclusion 213 -
References 216
اللخص العربي - 1 -

3

List of Abbreviations

3CO : 3 Column osteotomy

AIS : Adolescent idiopathic scoliosis

AP : Antero-Posterior

APVCR : Antero-Posterior vertebral column resection

BDBO : Bone disc bone osteotomy

C7PL : C7 Plumb line

CBVA : Chin-brow vertical angle

CK : Cervical kyphosis

CORA : Center of rotation and angulation

CSF : Cerebrospinal fluidCSL : Central sacral line

DVT : Deep venous thrombosisEBL : Estimated blood loss

HRQOL : Health-related quality-of-life
 IAR : Instantaneous axis of rotation
 LIV : Lower instrumented vertebra

LK : Lumbar kyphosis LL : Lumbar lordosis

LLK : Lower lumbar kyphosis

MMVCR : Multilevel modified vertebral column resection

ODI : Oswestry Disability index PCA : Patient controlled analgesia

PI : Pelvic Incidence

PJK : Proximal junctional kyphosis

PK : Pelvic kyphosis

PSF : Posterior spinal fixation

PSO : Pedicle subtraction osteotomyPSVL : Posterior sagittal vertical line

PT : Pelvic tilt

PTK : Posttraumatic kyphosis

PVCR : Posterior vertebral column resection

RA : Regional angulation

SPO : Smith-Petersen osteotomySRS : Scoliosis research society

List of Abbreviations

SS : Sacral slope

SSEP : Somatosensory evoked potential

SSV : Sagittal stable vertebra
 SVA : Sagittal vertebral axis
 TK : Thoracic kyphosis

TLJK : Thoracolumbar junction kyphosis

TP : Transverse process

UIV : Upper instrumented vertebraUMNL : Upper motor neuron lesion

VAS : Visual analogue scale

VCD : Vertebral column decancellation

VCR : Vertebral column resection

List of Figures

Fig (1): Sagittal spine profile (10).	- 3 -
Fig (2): Congenital kyphosis. Type I (failure of formation), Type II (failure of	
segmentation), Type III (Mixed anomalies) (45)	12 -
Fig (3): Fracture types leading to PTK Left: Burst fracture (A) both endplates (B)	
Upper endplate (C) Lower endplate. Right: Flexion distraction injury (A) 1	
level through bone (B) 1 level through ligaments and disc (C) 2 levels with	
middle through bone (D) 2 levels with middle through disc (56)	15 -
Fig (4): Sagittal balance assessment. (Line A) Drawn from the posterior superior	
corner of S1 perpendicular to the vertical edge of the radiograph. "Its	
length is measured in millimeters from the left-hand edge of the	
radiograph". (Line B) Drawn from the center of C7 perpendicular to the	
vertical edge of the radiograph. "Its length is measured in millimeters from	
the left-hand edge of the radiograph". Neutral Balance: (B = A), Negative	
Balance: $(B < A)$, Positive Balance: $(B > A)$ (74)	19 -
Fig (5): Chin brow vertical angle: a postural angle measured between a line from the	
brow to the chin and the vertical axis, with the patient standing with hips	
and knees extended and the neck in a neutral or fixed position (79)	21 -
Fig (6): Sagittal imbalance. (Left) Decompensated posture, (Right) Compensated	
posture (79)	21 -
Fig (7): Pathological behavior of pelvis in presence of kyphosis (a) Normal posture,	
(b) Abnormal posture, and (c) Compensatory posture. Increasing the Pelvic	
tilt to maintain an upright posture (79).	22 -
Fig (8): Cone of economy: Marking the "stable" zone which surrounds the individual	
being conically shaped from the feet to the head. Deviation from the cone	
center within the stable zone leads to greater muscular effort and energy	
expenditure maintaining an upright posture. Deviation outside the cone	
requires support or causes falling. (H) Head; (P-L) Pelvic level; (P-S)	22
Polygon of sustentation (72)	23 -
(50:50), And d-Type IV (20:80) (79)	27
Fig (10):Coronal decompensation and relationship between shoulders to the pelvis	21 -
(A) Type 1 & (B) Type 2 (90)	28 -
Fig (11): 3D images of a right pedicle as produced by a solid model computer	20 -
software, the coordinate system is shown: (A) Posteroanterior view (B)	
Anteroposterior view (C) Infero-superior view (D) Superioinferior view	
	30 -
Fig (12): Dimensions of (A) T3, (B) T8, and (C) L4 pedicles. Vertical diameter (c) is	
increasing from 0.7 to 1.5 cm, horizontal diameter (d) is increasing from	
0.7 to 1.6 cm with T5 being the narrowest around 0.5 cm. Direction is	
almost sagittal all through from T4 to L4. Angle (e) rarely exceeds 10°.	
Proximally, the direction becomes more oblique: $T1 \rightarrow 36^{\circ}$, $T2 \rightarrow 34^{\circ}$, $T3$	
\rightarrow 23°. L5 is also oblique (30°), but is large and easy to drill (98)	31 -
Fig (13): Dorsal pedicle landmarks left (Entry points), Right (Anatomical landmarks)	
(105)	35 -

Fig (14): Schematic for dorsal entry points and projections (A) Antero-posterior view,	
(B) Lateral view (106)	35 -
Fig (15): Schematic for lumbar entry points and projections (Left) Antero-posterior	
view, (Right) Lateral view (112).	36 -
Fig (16): Showing spinal curvatures (115).	38 -
Fig (17): Spinal segments A. Motion spinal segment divided into anterior and	
posterior portion, B. Posterior portion of the motion segment containing the	
only synovial spinal joint, the apophyseal joint, joining the superior and	
inferior facets (116, 117).	39 -
Fig (18): Deformity planes: (A) Sagittal, (B) Coronal, (C) Axial (118)	40 -
Fig (19): The six fundamental segmental movements, A- Longitudinal axis B-	
Coronal axis C- Sagittal axis. (113)	41 -
Fig (20): Schematic showing spinal loading. A: A kyphotic deformity with a 58°	
Cobb's angle. Physiological vertically directed forces presented by the	
large arrow working at a moment arm at length a. B: The deformity is	
represented schematically, showing that the posterior structures (P)	
resisting tensile loading and (A) the anterior elements resisting compressive	
loading (120)	42 -
Fig (21): Load bearing axis positional changes (A) The load-bearing axis (shaded	
column) located in the middle column of Denis. (B) In extension the axis is	
shifted dorsally. (C) In flexion the axis is shifted ventrally (121)	44 -
Fig (22): Sagittal balance. (A) A sagittaly balanced spine with cervical lordosis,	
dorsal kyphosis, and lumbar lordosis. (B) SVA: plumb line dropped from	
the mid C7 in the standing posture falls at the lumbosacral pivot point	
(Posterior superior corner of S1 body). (C) With loss of lumbar lordosis,	
the SVA falls at the sacral promontory region. (D) Significant imbalance	
shifts the SVA significantly ventral to the promontory. (E) CSL is used to	
assess coronal plane balance, a line perpendicular to a line connecting both	15
iliac crests, ascending in line with the sacral spinous processes (122)	45 -
Fig (23): Apical and neutral vertebrae (a) Apical vertebra located at the curve horizon	
(A) The sagittal or (B) The coronal plane. The one associated with adjacent disc spaces with the greatest segmental angulation (α) of all curve	
interspaces. (b) Neutral vertebrae are located between curves (A) Sagittal	
or (B) coronal, with least or no angulation at both its rostral and caudal disc	
spaces (β) (122).	16
Fig (24): Implant termination (A) A long implant must not terminate near or at an	+0 -
apical vertebra. (B) A longer implant is mandatory. (C) Spine deformation	
progression at the termini of the stabilizing implant is inevitable if stopping	
at the curve apex. (D) This is also true for scoliotic deformity correction.	
(E) Postoperative deformity progression as the implant stopped at and not	
beyond the apical vertebra (121).	47 -
Fig (25): Bringing the spine to the implant: Used forces are oriented along any axis or	т,
plane, (A) The long axis, (B) The sagittal plane and (C) The coronal plane.	
Arrows represent forces applied by the implant (121)	47 -
Fig (26): Three point bending force (A) Applied bending moments in the sagittal	
plane by a three-point bending mechanism and (B) Applied moment arm	

3 -
} -
3 -
3 -
) -
) -
۱ -
3 -
7 –
3 -
- (
- (
) -
`
) -
l -
3 -
1
1 - 5 -
· -
5 -
5 -
5 -
5 - 7 -
5 -
5 - 7 -
739

conus to spinal canal C. Axial 12-weighted image showing cord displac	ed
posterior within the secal sac (arrow).	68 -
Fig (46): Regional sagittal alignment:	71 -
Fig (47): Pelvic parameters: (A) Pelvic incidence (B) Sacral slope (C) Pelvic tilt (74	1) 72 -
Fig (48): 6 Grades of resection (162, 163)	
Fig (49): Pedicle subtraction osteotomy (PSO): Three column transpedicular wed	
osteotomy, the intact anterior cortex acting as a hinge for closing the defe	ect.
The osteotomy creates two large cancellous surfaces opposed togeth	
aiming for fusion (163)	
Fig (50): Illustration of Partial PSO (172,173).	
Fig (51): Bone-disc-bone osteotomy (BDBO) (A) Type 1 (B) Type 2 (C) Type (174).	e 3
Fig (52): Hemivertebra resection: (A) Excision (B) correction of deformity (177)	89 -
Fig (53): VCR technique (90).	
Fig (54): Posterior vertebral column resection (PVCR). (A) Pedicle scre	ws
segmentally inserted sparing the resected levels. (B) Posterior structur	
vertebral body and the discs removed on one side after application of	
contralateral temporary rod. (C) Exchange of temporary rod and sar	me
resection is carried out on the other side. (D) Gradual correction	of
deformity by compression, in situ bending and changing the tempora	ary
rods. (E) Mesh cage inserted anteriorly to prevent shortening of the spin	nal
column (174).	
Fig (55): Incision and dissection A. Incision line B. Dissection to spinous process	ess
(214)	96 -
Fig (56): Subperiosteal dissection of paraspinal muscles A. Dorsal region B. Lumb	oar
region (214)	97 -
Fig (57): Extracavitary exposure A. Detachment of Muscle attachments from desir	red
rib with periosteal elevator. B. Detachment of Muscle attachments from	
transverse process and lamina to clearly expose the rib and its articulati	ion
to spine. C. Disarticulation of the rib and its arthrodial junction.	D.
Subperiosteal dissection is done along pedicle and upper and lower body	to
separate pleura from vertebral wall (215).	99 -
Fig (58): Operative schematic of the thoracic PVCR procedure:	102 -
Fig (59): VCD illustration: (A) Pedicle screws insertion. (B) Decancellation	of
deformed vertebrae by a high-speed drill. (C) Removal of poster	ior
structures with the residual discs. (D) Correction by anterior colum	mn
elongation and opening (arrow) and posterior column shortening, with t	the
residual bone replacing the metal mesh used in the VCR technique, acti	ing
as a "bony cage" (8)	103 -
Fig (60): Eggshell procedure: (A) Bone removal with increasing sizes of curettes ((B)
Preservation of medial pedicular wall & post vertebral wall (C) Late	ral
pedicular wall and transverse process removed (D) extending curettage	to
cephalic disc and in case of vertebrectomy caudad disc also (E) Af	
finishing decancellation the medial pedicular wall is removed and t	
posterior vertebral wall is tamped away from the cord and removed (217)	
Fig (61): Illustrating steps of MMVCR (7)	

Fig (62): Age distribution.	108 -
Fig (63): Sex distribution.	109 -
Fig (64): Etiology of deformity.	110 -
Fig (65): Congenital etiology.	111 -
Fig (66): Deformity type	111 -
Fig (67): Preoperative Frankel grading	113 -
Fig (68): Oswestry low back pain questionnaire	118 -
Fig (69): Arabic translation of Oswestry low back pain questionnaire	119 -
Fig (70): Visual analogue scale.	
Fig (71): Standing whole spine AP-Lateral views (Case 35)	123 -
Fig (72): Flexion-Extension views (Case 35).	123 -
Fig (73): C.T scan images with 3D Reconstruction, Above (Case 13) Below (Cas	
23)	
Fig (74): Preoperative MRI images showing, Spondylodiscitis Above (Case 13) and	
Congenital Posterior Hemivertebra Below (Case 1)	
Fig (75): Patient positioning on frame (Case 4)	
Fig (76): Exposure (Left) Pedicle screws inserted (Right)	
Fig (77): Posterior structures removed (Left), Rib exposed (Middle), Dorsal roots cu	
off (Right).	
Fig (78): (A) Temporary rod inserted, (B) Resection on working side, (C) Roo	
exchanged + Resection of opp. Side, (D) Resection complete with a towe	
passing anterior to cord	
Fig (79): A: Correction of deformity over contoured rod, B: Final rods inserted one by	
one	
Fig (80): Anterior reconstruction, Mesh cage (Left), Rib strut (Right)	135 -
Fig (81): Relation between local correction and number of resected vertebrae	
Fig (82): Relation between Regional correction and number of resected vertebrae	
Fig (83): Number of resected level.	
Fig (84): Method of reconstruction.	
Fig (85): ODI (preoperative, postoperative at 6 month and 1 year, Improvement)	
Fig (86): ODI at last follow up.	
Fig (87): Scatter graph showing relationship between ODI preoperatively and	
improvement postoperatively	
Fig (88): Patient 1: Preoperative (A).	
Fig (89): Patient 1: Preoperative (B).	
Fig (90):Patient 1: Postoperative.	
Fig (91): Patient 1: Last follow up (24 month).	
Fig (92): Patient 13: Preoperative (A).	
Fig (93): Patient 13: Preoperative (B).	
Fig (94): Patient 13: Postoperative (A).	
Fig (95):Patient 13: Postoperative (B)	
Fig (96): Patient 13: Last follow up (13 month).	
Fig (97):Patient 23: Preoperative.	
Fig (98): Patient 23: Postoperative.	
Fig (99): Patient 23: Last follow up (12 month).	
Fig (100): Patient 11: Preoperative.	
_ \- · · / · · · · · · · · · ·	

List of Figures

170 -
171 -
172 -
174 -
175 -
176 -
178 -
179 -
180 -
181 -
183 -
184 -
184 -
185 -
187 -
188 -
189 -
190 -
190 -
191 -

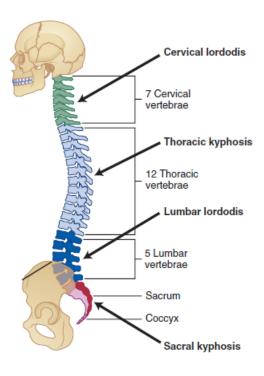
List of Tables

Table (1): Pathophysiologic classification of kyphosis (6).	9 -
Table (2): Sensory, motor and Reflex examination (132).	62 -
Table (3): Comparison between Anterior, Posterior and Combined approaches	
(153)	82 -
Table (4): Resection grading (162,163).	85 -
Table (5): Patient No, Sex, Age, Type, Etiology of deformity and type of congenital	
deformity	112 -
Table (6): Patient No, Local and Regional kyphosis angles preoperatively and	
postoperatively, % of correction and Degree of correction	
Table (7): Relation between degree of local and regional correction.	141 -
Table (8): comparison between kyphosis and kyphoscoliosis regarding angle	
measurements	141 -
Table (9): Mean degree of correction (Local and regional) from one, two, three	
resected vertebra	142 -
Table (10): ODI results.	145 -
Table (11): showing disability measures in kyphosis and kyphoscoliosis groups	146 -
Table (12): Relation between Preoperative ODI and Improvement.	147 -
Table (13): statistical difference between pre and post measurements of disability	
measure and the three angles measured	148 -
Table (14): Pre and Postoperative UMNL	149 -
Table (15): % of Intraoperative and postoperative complications.	151 -
Table(16): Intraoperative complications relation with preoperative local and	
regional kyphosis angle.	151 -
Table (17): Postoperative complications relation with preoperative local and	
regional kyphosis angle	152 -
Table (18): Case 1 data	153 -
Table (19): Case 2 data	158 -
Table (20): Case 3 data	164 -
Table (21): Case 4 data	168 -
Table (22): Case 5 data	173 -
Table (23): Case 6 data	177 -
Table (24): Case 7 data	182 -
Table (25): Case 8 data	
Table (26): Descriptive data of studies	207 -
Table (27): Descriptive data of studies complications	208 -

Introduction

Vertebral column resection (VCR) is defined as a circumferential resection of at least one vertebra with all its anterior and posterior elements along with the adjoining intervertebral discs. It was first described by Bradford as a combined approach requiring posterior stabilization, and anterior vertebrectomy and reconstruction. Combined anterior and posterior resection requires a lengthy operation (1). Suk et al. (2) first promoted a posterior-only VCR. They believed the total operating time and blood loss was reduced through this one-stage posterior-only procedure.

Vertebral column resection has been suggested for tumors (3), and spondyloptosis (4). Also, VCR has been described for severe rigid angular deformities (5).


A deformed section of the spine as seen in cases of congenital kyphoscoliosis or post-infectious kyphosis not only affects the development of the remaining healthy spine, but also that of the chest wall, the extremities and body balance. Decompensation in the sagittal plane of the spine leads to specific complaints such as pain, cardiopulmonary compromise, significant cosmetic problems, limitation of the activities of daily living, psychological implications and neurological impairment (6). Sufficient restoration of alignment may not only result in better fusion, but also in better spinal canal decompression (7,8).

Aim of the Work

This prospective study is conducted to evaluate the results of posterior vertebral column resection (PVCR) in patients needing corrective reconstructive surgery or decompressive surgery of kyphotic or kyphoscoliotic spinal deformity resulting from congenital, developmental, traumatic or infectious conditions.

Introduction

The spine is normally formed of four curves in balance, intrauterine and at birth, only the two primary kyphotic curves are present at the thoracic and sacrococcygeal area. The secondary lordotic curves of the cervical and lumbar areas are considered compensatory and develop when the child holds his head upright and when he begins to stand and walk (Fig. 1) (9,10). These Lordotic curves compensate for kyphotic degrees of the primary curves to balance the spine sagittaly.

Fig (1): Sagittal spine profile (10).