The Role of Urinary Monocyte Chemoattractant Protein-\ in Monitoring Children with Lupus Nephritis

Thesis
Submitted for partial fulfillment of Masters Degree
in Pediatrics

Ву

Feda Abd El Aziz El Farouk El Bassiouny

MB.B.Ch. (۲۰۰۸)

Faculty of Medicine - Tanta University

Under Supervision of

Prof. / Zeinab Awad El-Sayed

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Assist. Prof. / Dalia Helmy El-Ghoniemy

Assistant Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Assist. Prof. / Dina Ahmed Soliman

Assistant Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University

7.10

سِّمِ اللهِ الرَّحَنِ الرَّحيمِ
(. . . رَبِّ أَوزِعنِي أَن أَشْكُر نِعمَتَكَ الَّتِهِ
الْغَمَّتُ عَلَيَّ و عَلَى والِدَيَّ
وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وأَدْخِلْنِي
بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

صدق الله العظيم

النمل. اية رقم 19

Acknowledgment

Praise be to **ALLAH**, The Merciful, The Compassionate for all the gifts **I** have been offered; one of the gifts is accomplishing this research work.

I would like to express my deepest thanks and gratitude to **Prof.**/ **Zeinab Awad El Sayed**, Professor of Pediatrics, Faculty of Medicine - Ain Shams University, **Assist. Prof.**/ **Dalia Helmy El-Ghoniemy**, Assistant Professor of Pediatrics, Faculty of Medicine - Ain Shams University and **Assist. Prof.**/ **Dina Ahmed Soliman**, Assistant Professor of Clinical Pathology, Faculty of Medicine - Ain Shams University, for their valuable assistance, kind supervision, great efforts and time they have devoted to this work.

I am indebted to patients who willingly participated in this study, as well as the physicians and nurses, who were totally supportive during all steps of data collection.

Last but not least my thanks and gratitude go to my family, especially my parents, my husband and my child, for encouraging me in every step in my life.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	٠١
Aim of the Work	٣٣
Review of Literature	
- Lupus Nephritis	ξ
- Urinary Monocyte Chemoattractant Pro-	tein-\ ٣١
Subjects and Methods	٣٨
Results	۰۳ م
Discussion	٧٣
Summary	۸۱
Recommendations	۸۳
References	
Appendix	I
Arabic Summary	

List of Abbreviations

ACE : Angiotensin converting enzyme

ACR : Albumin-creatinine ratio

ACR : American College of Rheumatology

Ang : Angiotensin

anti-dsDNA: Anti-double stranded DNA

Anti-RNP: Antiribonucleoproteins

APRIL : A proliferation-inducing ligand

APS : Antiphospholipid syndrome

ARBs : Angiotensin receptor blockers

BILAG : British Isles lupus assessment group

BILD : Brief Index of Lupus Damage

BlyS/BAFF: B-lymphocyte stimulator B-cell activating factor

CAMs : chemokine adhesion molecules

CBC : Complete blood countCCL : C-C chemokine ligandCCR : C-C chemokine receptor

CFH : Complement factor H
CKD : Chronic kidney disease

DPLN : Diffuse proliferative LN

dsDNA : Double-stranded DNA (dsDNA)

ECLAM : European Consensus Lupus Activity Measurement

ELISA : Enzyme-linked immuno-sorbent assayENAS : Extractable nuclear antigen antibodies

ESR : Erythrocyte sedimentation rate

GFR : Glomerular filtration rateHDL : High density lipoprotein

ICs : Immune complexes

List of Abbreviations (Cont.)

IFNc-IP-\ : Interferon-Inducible Protein \ \ .

IL : Interleukins

ISN : International Society of Nephrology

IVIG: Intravenous immunoglobulin

LAI :Lupus Activity Index

LDL : Low density lipoprotein

LDIQ :Lupus Damage Index Questionnaire

LN : Lupus Nephritis (LN)

MBL : Mannose binding lectin

MCP-\(^\) : Monocyte chemoattractant protine-\(^\)MIP-\(^\)a : Macrophage inflammatory protein-\(^\)a

NGAL : Neutrophil Gelatinase-Associated Lipocalin

ET-\: Endothelin-\

NSAIDs : Nonsteroidal anti-inflammatory drugs PAPS : Primary antiphospholipid syndrome

PCR : Protein–creatinine ratio

RANTES: Regulated on Activation Normal T Cell Expressed

RAS : Renin angiotensin system

ROC : Receiver Operating Characteristic

RPS : Renal Pathology Society

SD : Standard deviation

SDI : Systemic lupus Damage Index (SDI).

sIL-[∨]R : Serum interleukin [∨] receptor

SLAM :Systemic Lupus Activity Measure

SLAQ : Systemic Lupus Erythematosus Activity Questionnaire

SLESystemic lupus erythematosusSLEDAISLE disease Activity Index

SLICC: Systemic Lupus International Collaborating Clincs

List of Abbreviations (Cont.)

SPSS : Statistical Package for Social Sciences

S β M/SCysC : Serum β microglobulin/cystatin C

TCR : T-Cell Receptor

TGF-β\' : Transforming growth factor beta-\'

Th : Helper

TNF : Tumor necrosis factor

TWEAK : TNF-like weak inducer of apoptosisVEGF : Vascular endothelial growth factor

WHO: World Health Organization

List of Tables

Table No.	Title	Page No.
Table (\):	Candidate genes associate	ed with LN
Table (Y):	International Society of Pathology Society classification of LN	Nephrology/Renal (ISN/RPS) ۲۰۰۳
Table (*):	Summary of candidate b nephritis	
Table (4):	Relative doses and equive glucocorticoids	
Table (*):	Systemic Lupus Eryth Activity Index (SLEDAI)	
Table (٦):	Categories on the basis of	f SLEDAI scores ٤٢
Table (Y):	British Isles Lupus A (BILAG) Index (Renal)	
Table (^):	Systemic Lupus International Clincs/ American College (SLICC/ACR) Damage In	e of Rheumatology
Table (4):	Descriptive data and dis- of the studied patients	
Table (' ·) :	Clinical, laboratory and t	herapeutic data of patient
Table (' '):	Correlations between Urir	ary MCP-1 and age, age a
Table (۱۲):	Comparison between history	logical classes of LN as re

List of Tables (Cont.)

Table No.	Title	Page No.

Table (۱۳):	Correlations between urinary MCP-1 and the routine laboratory investigations and the immunological markers of the studied SLE patients at enrollment
Table (\ \ \ \ :):	Correlations between urinary MCP-1 and different therapeutic r
Table (۱ °):	Correlations between urinary MCP-\ with lupus activity indices
Table (١٦):	Variations of urinary MCP-1 in relation to SLEDAI among the studied patients at enrollment
Table (\ \ \ \):	Correlations of urinary MCP-1 with immunological markers and
Table (۱۸):	Correlations between urinary MCP-1 and different therapeutic r
Table (^ 4):	Correlations between Urinary MCP-1 with lupus activity indice

List of Tables (Cont.)

Table No.	Title	Page No.	
Table (۲۰):	Variations of SLEDAI in	relation to urinary MCP-	among th
Table (' '):	Univariate regression ana	lysis: active BILAG (B/C)	versus in

List of Figures

Figure No	. Title	Page No.
Figure (\):	An imbalance between homeostasis and immune deposition in LN.	complex
Figure (۲):	Schematic representation of a mathogenesis of renal disease in SL	
Figure (*):	Assay procedure summary	٥١
Figure (4):	Comparison between the studied and healthy controls as regards of urinary MCP-1	the level
Figure (°):	Comparison between histologica of LN as regards urinary MCP-1.	
Figure (٦):	Comparison between the studied at enrollment and after 7 mc regards the level of urinary MCP-	onths as
Figure (Y):	Correlation between urinary MC Y & hrs urinary protiens at enrollment	
Figure (^):	Correlation between urinary MC serum C ^r at enrollment	
Figure (4):	Correlation between urinary MC cummulative cyclophosphamide enrollment	dose at
Figure (۱۰):	Correlation between urinary MC SLEDAI at enrollment	
Figure (\\):	Correlation between urinary MC BILAG (renal score) at enrollmen	

List of Figures (Cont.)

Figure No	. Title	Page No.
Figure (۱۲):	Receiver Operating Characteristic curve to define the best cutoff valuurinary MCP-1	e of
Figure (۱۳):	The percentage of change in SL BILAG-renal score, in relation percentage of the change in the MCP-1 and the other markers (Yurinary proteins, cr clearance, cY, DNA) over the Y months of follow	to the urinary to hours anti-ds

Introduction

ystemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiorgan involvement. Children with SLE often have severe disease presentations including renal involvement, which ranges from asymptomatic urinary findings to acute renal failure (*Brunner et al.*, $r \cdot \cdot \wedge$).

Lupus Nephritis (LN) remains one of the most important factors influencing therapeutic management and long-term prognosis (*Bogdanovic et al.*, **·**; *Hobbs et al.*, ****). Renal involvement in patients with SLE in the form of severe LN is associated with a significant burden of morbidity and mortality. Conventional laboratory biomarkers in current use have not been very successful in anticipating disease flares, predicting renal histology, or decreasing unwanted outcomes. Since early treatment is associated with improved clinical results, it is thus essential to identify new biomarkers with substantial predictive power to reduce the serious sequel of this difficult to control lupus manifestation (*Reyes-Thomas et al.*, ****)1).

Since urine can be readily obtained, it lends itself as an obvious biological sample. Much of the focus has been on the measurement of urinary chemokines and cytokines in patients with LN. It has been reported that monocyte chemoattractant

protein-\(\text{ (MCP-\(\))}\), a key chemokine involved in monocyte chemotaxis can be consistently found at high levels in the urine of patients with active LN. Moreover urinary MCP-\(\) levels decline with treatment of nephritis ($Li\ et\ al.,\ ^{r} \cdots ^{r}$). In LN, MCP-\(\) may play a role in modulating interstitial inflammatory process and in tubulointerstitial renal damage via transforming growth factor beta-\(\) (TGF-\(\beta\-\)) pathway ($Wagrowska-Danilewicz\ et\ al.,\ ^{r} \cdots$).

Aim of the Work

The aim of this study was to evaluate the validity of the urinary monocyte chemoattractant protein-\ as a urinary biomarker in diagnosis and follow up of juvenile onset LN. Its relation to renal flare, remission and response to treatment was fully studied.

Lupus Nephritis

upus Nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), which is associated with significant morbidity and mortality of SLE patients (*Li et al.*, *\(\text{1'})\).

Epidemiology:

LN is present in approximately $\circ \cdot \%$ - $\wedge \cdot \%$ of patients with pediatric SLE. In approximately $\wedge \circ \%$ of pediatric patients who have renal lupus, the nephritis is manifested within the first year after diagnosis of SLE (*Benseler and Silverman*, $r \cdot \cdot v$).

Children with SLE are at a higher risk of renal disease than adults and tend to sustain more disease damage secondary to more aggressive disease and treatment-associated toxicity (*Brunner et al.*, Y. . . 4).

AlSaleh et al. (r...) reported a high prevalence of LN (or.rx) among their Arab patients, which they felt probably reflected a common characteristic in SLE patients of Middle East origin.