The Use of the Pentacam in Studies of the Anterior Segment of the Eye

Essay

Submitted for partial fulfillment of Master degree in Ophthalmology

By

Noha Saleh Abd El - Ghani M.B.; B.Ch.

Supervised by

Prof. Dr. Omar Mohamed El Zawahry

 $Professor\ of\ Ophthalmology$

Faculty of Medicine - Cairo University.

Assist. Prof. Dr. Ghada Ismail Gawdat

Assistant Professor of Ophthalmology

Faculty of Medicine - Cairo University.

Dr. Hany El-Mekawey El-Mekawey

Lecturer of Ophthalmology

Faculty of Medicine - Cairo University.

Cairo University

2011

Abstract

The key advantages of the rotating imaging process are the precise measurement of the central cornea, the correction of eye movements in extremely short examination time.

It can capture the data behind the opacity because the camera images the eye from many angles and it is also excellent tool for identifying intra lenticular foreign bodies.

Several studies report that the Pentacam has an excellent reliability in measuring CCT and ACD in normal and keratoconus eyes. The repeatability of posterior corneal elevation was also reported in a recent publication.

It is limited in measuring the axial length of the eye and in its evaluation of the anterior chamber angle. Direct angle visualization of the angle, the scleral spur, ciliary body, and ciliary sulcus is only possible with the Anterior Segment OCT and UBM; not the Pentacam.

Key Words:

Anterior Chamber - Axial Length - Intra Ocular Lens.

ACKNOWLEDGEMENT

Thanks to **Allah** the most merciful.

I would like to express my real and deepest, gratitude respect and appreciation to for **Prof. Dr.Omar El Zawahry**, Professor of Ophthalmology, Cairo University who was really so supportive & helpful to me in this work.

Special thanks are due to **Prof. Dr.Ghada Gawdat** Professor of Ophthalmology, Cairo University for her generous effort throughout the work.

My deepest gratitude to **Dr. Hany El-Mekawey**, Lecturer of Ophthalmology, Cairo University for his honest assistance and advices that made it easier for me to complete this work.

Of course, I can't find enough words to thank my Parents, my sister, my brother and my daughter for their endless support.

INDEX

Content	Page
Introduction	1
Aim of Work	3
Anatomy of the Anterior Segment:	
(A) Anatomy of the Cornea.	5
(B) The Aqueous.	8
(C) Anatomy of the Anterior Chamber.	8
(D) Anatomy of the Crystalline Lens.	9
Optical Properties of the Anterior Segment:	
(A)The Cornea.	12
(B)The Anterior Chamber.	15
(C)The Aqueous.	15
(D)The Crystalline Lens.	16
Optical Aberrations.	18
Physics Of The Pentacam:	
(A)The Scheimpflug Principle.	22
(B)The rotating Scheimpflug Camera (the Pentacam).	24
(C)Other commercially available devices.	27
Technology And Software Of The Pentacam:	
(A)Technology of Pentacam.	31
(B)The Software of Pentacam.	32

Role of the Pentacam in Examination of the Anterior	
Segment:	
The Cornea:	
(A) Corneal Examination with the Pentacam.	42
(B)Diagnosis of Corneal Diseases with Pentacam.	51
Role of the Pentacam in Corneal Surgery	68
(A)Corneal Refractive Surgery.	
(B) Penetrating Keratoplasty Surgery.	76
(C)Endothelial Keratoplasty.	77
Anterior Chamber Examination with the Pentacam:	
Pentacam 3D Chamber Analyzer.	81
The importance of the Pentacam in the Anterior Chamber Analysis:	
(A): Applications of Pentacam in Anterior Chamber	83
Measurement. (B): The Role of Pentacam in Glaucoma Screening.	88
Role of the Pentacam in Examination of Crystalline Lens:	
(A)Cataract Detection by Pentacam.	91
(B)Role of Pentacam in lens surgery.	93
(1)IOL Calculation by the Pentacam (Biometry).	94
(2)IOL Calculation after Refractive Surgery.	
(3)Pentacam Guided Phacoemulsification.	99
(4)Post Cataract Surgery Evaluation by Pentacam.	100 104
(5)Scheimpflug Imaging of Traumatic Intralenticular Foreign	104
Body.	

Technologies in Surface Studying.	106
Technologies in the Corneal Thickness	112
Technologies in the Anterior Chamber	117
Technologies in the Crystaline Lens	123
SUMMARY	127
REFERENCES	129
ARABIC SUMMARY	148

LIST OF FIGURES

Figure 1	Anterior segment anatomy.	7
Figure 2	Semidiagramatic representation of the	9
	structures of the angle of the anterior	
	chamber.	
Figure 3	Thickness of lens capsule.	10
Figure 4	Spherical aberration.	18
Figure 5	The difference area represented by small gray squares.	20
Figure 6	The Scheimpflug camera with higher depth of focus and sharp image.	22
Figure 7	Setup of scheimpflug camera. Note the extended depth of field: the entire arrow in the subject plane is rendered sharply in the film plane.	23
Figure 8	The Pentacam takes multiple image samples.	24
Figure 9	The 3-D animation of the Pentacam.	25
Figure 10	Pentacam HR.	27
Figure 11	By looking at the same slit from both sides simultaneously and averaging the apparent thicknesses, the resulting error due to decentration becomes virtually zero.	28
Figure 12	Simple averaging (green line) of the thicknesses in the two corresponding Scheimpflug views (red and blue lines) reduces the decentration error by a factor of 10, without the need for correcting the misalignment.	29
Figure 13	GALILEI automatically acquires sets of dual Scheimpflug images and Placido images. Shown in this figure is the setup view seen by the operator while adjusting the cameras for focus and centration on the subject's eye.	30
Figure 14	The system of the Pentacam.	31
Figure 15	The image of a group 5 nuclear cataract.	33
Figure 16	A subtle opacity in the lens.	34

Figure 17	Colour maps that show every point of the phakic IOL in top view and as minimum space values for critical areas of the lens.	35
Figure 18	Oculus Pentacam Holladay Power Map screen showing Sim-K and Equivalent K reading (EKR).	36
Figure 19	The Keratoconus indices page.	37
Figure 20	Belin/Ambrosio Enhanced Ectasia Display.	38
Figure 21	Corneal wave front software.	39
Figure 22	IOP modification according to corneal thickness.	40
Figure 23	Tow difference thickness mapes.	41
Figure 24	The Scheimpflug image.	42
Figure 25	Sagittal curvature corneal map of a young patient.	44
Figure 26	Tomography of Radial Keratotomy by the Pentacam.	45
Figure 27	Examples of thick, normal and thin corneas evaluated with the Pentacam.	46
Figure 28	The pachymetric map of the Pentacam.	47
Figure 29	Corneal thickness spatial profile graph. The top graph shows the average pachymetry (along each of the 22 concentric circles) as you go from the thinnest point to the periphery. The bottom graph shows the percentage thickness increase value at those same points.	49
Figure 30	Easy detecting the cone by the Pentacam as cooler colors (green and blue) represent flatter areas, while warmer colors (red, orange and yellow) represent steeper area.	52
Figure 31	Classification of the stages of keratoconus using the pentacam.	54
Figure 32	Keratoconus indices page.	55
Figure 33	Keratoconus in Zernike polynomials model.	56

Figure 34	Schematic drawing showing how inclusion of the cone in the reference surface calculation will influence the BFS and hide the corneal abnormality.	57
Figure 35	Modified spherical reference body automatically adjusted in the same keratokonic corneas.	57
Figure 36	The principle of the enhanced spherical refrance body.	58
Figure 37	The elevation back map.	59
Figure 38	A toric ellipsoid more closely resembles the shape of the naturally prolate cornea.	60
Figure 39	Fitting a prolate cornea to a best-fit sphere will generate inaccurate values.	61
Figure 40	Subtle topographic changes in early post Lasik ectasia.	61
Figure 41	Pellucid marginal degeneration.	62
Figure 42	Upwards deviation of the red curve in pullucid marginal degeneration.	63
Figure 43	Corneal thickness in Fuchs corneal dystrophy.	64
Figure 44	Vernal Keratoconjuntivitis (VKC). Stage IV classic subepithelial infiltrates without punctate epithelial keratitis.	64
Figure 45	Intrastromal Cornea Inlay. Clinicopathological correlation Scheimpflug Image correlates well with ICRS position.	65
Figure 46	Clinicopathological correlation in Corneal Scar. Very high densitometry peak at scar tissue (100%).	65
Figure 47	Epithelial Ingrowth Post Lasik.	65
Figure 48	Anatomy of the cornea.	69
Figure 49	Pentacam HR measures the flap thickness well.	70

Figure 50	Severe ectasia following LASIK for high myopia (an example of complication after LASIK which highly assessed by the pentacam).	71
Figure 51	The Pentacam image.	71
Figure 52	Plane red curve in Fuchs corneal dystrophy.	72
Figure 53	This image shows a Pentacam front refractive power map of an eye with prior myopic LASIK.	73
Figure 54	The image is of a Pentacam front refractive power map of an eye with prior hyperopic LASIK.	73
Figure 55	Diagram showing the cornea and Intacs segments.	75
Figure 56	Penetrating keratoplasty patient can be assessed well by Pentacam.	76
Figure 57	Corneal densitometry after Deep Lameller Endothelial Keratoplasty by the Pentacam.	78
Figure 58	Scheimpflug images of corneal haze at 2 weeks, 1 month and 3 months after DSAEK and PK.	79
Figure 59	The Scheimpflug image revealed Descemet's stripping endothelial keratoplasty that detached 10 years after LASIK surgery.	80
Figure 60	Examples of shallow ,normal , and deep anterior chambers evaluated with the Pentacam.	81
Figure 61	The Pentacam automatically measures the anterior chamber angle, chamber volume, chamber depth.	82
Figure 62	A Pentacam image shows the measurement from the posterior surface of the ICL to the anterior surface of the crystalline lens.	83

Figure 63	The Scheimpflug image on Pentacam showing margins of anterior capsulorrhexis, intact posterior capsule and a wellcentered IOL implant with a minimum tilt.	84
Figure 64	The Scheimpflug image function.	85
Figure 65	A diffrence map showing the AC information preoperatively and after a Visian lens implantation.	86
Figure 66	Scheimpflug photo of a phakic refractive lens that verifies that the vault of the IOL over the crystalline lens.	87
Figure 67	IOP correction through pachymetry	88
Figure 68	Pentacam monitor patancy of peripheral iridotomy.	90
Figure 69	A subtle opacity in the lens.Note the density in the green diagram.	91
Figure 70	Scheimpflug measure lens nucleus density.	92
Figure 71	The Holladay Report Equivalent K Readings (EKRs)	96
Figure 72	Screen shot of the True net power map of the Pentacam system (Oculus).	97
Figure 73	The BESSt program, the program used for Corneal Power Calculator.	98
Figure 74	Pseudophakic patient evaluation by Pentacam.	100
Figure 75	The Pentacam calculates best-fit curve and plane.	100
Figure 76	Different intensities of PCO captured on the Scheimpflug tomograms.	101
Figure 77	Tomogram provides an excellent representation of the opacified posterior capsule and reflects the changes following Nd: YAG posterior capsulotomy.	102
Figure 78	Pentacam tomogram and slit lamp retroillumination photographs of the same eye.	102
Figure 79	The Pentacam utility in diagnosing Capsular	103

	Bag Distension Syndrome.	
Figure 80	Pentacam Scheimpflug image of the	104
	anterior segment. Intralenticular foreign	
	body (ILFB) and the corneal wound of	
	entry.	
Figure 81	The Pentacam uses elevation as its primary	107
	source data in corneal topography.	
Figure 82	The Orbscan.	108
Figure 83	A typical map of eye with primary posterior	109
	corneal elevation.	
Figure 84	AS-OCT corneal pachymetry map.	114
Figure 85	Flap thickness and Residual stromal	115
	thickness measurement tool.	
Figure 86	Ultrasound biomicroscopy of the anterior	117
	chamber angle.	
Figure 87	Manual analysis of the anterior chamber	118
	depth with Pentacam.	
Figure 88	The anterior segment OCT demonstrating	119
	angle to angle measurement and location of	
	angle structures.	
Figure 89	Pentacam image of a patient diagnosed as	121
_	having suspected primary angle-closure	
	glaucoma.	
Figure 90	AL measurement using IOLMaster.	123
Figure 91	Anterior chamber sizing using OCT:	125
_	revealing the anterior chamber width and	
	the anterior chamber depth.	
Figure 92		

LIST OF ABBREVIATIONS

AC=Anterior Chamber.

ACD=Anterior Chamber Depth.

AL=Axial Length.

BFS= Best Fit Sphere.

CBDS= Capsular Bag Distension Syndrome.

CCD=Charged Couple Device.

CCT= Central Corneal Thickness.

CT =Corneal Thickness.

CTSP= Corneal Thickness Spatial Profile.

DSP = Digital Signal Processor.

DLEK = Deep Lameller endothelial Keratoplasty.

DSAEK= Descemet stripping automated endothelial keratoplasty.

3 D=Three dimentional.

EKR = Equivalent K-readings.

EKRs = Equivalent K-Readings.

ICL=Implantable Contact Lens.

ILFB =Intralenticular Foreign Body.

IOL=Intra Ocular Lens.

IOP=Intra Ocular Pressure.

INTACT=Intra stromal Corneal Ring Segment.

KC= Keratoconus.

LED's= Light Emition Diode.

LASIK = Laser Assisted In-Situ Keratomilieusis.

LASEK= Laser Subepithelial Keratomilieusis.

mm=millimeter.

NTG =Normal Tension Glaucoma.

OCT= Optical Coherense Tomography.

Pentacam HR= Pentacam High Resolution.

PXS=Pseudoexfloliation Syndrome.

PEXG =Pseudoexfloliation Glaucoma.

PTI= Percentage of Thickness Increase.

PMD= Pellucid Marginal Degeneration.

PRK= Photorefractive Keratectomy.

PI =Peripheral Iridotomies.

PCO =Posterior Capsule Opacification.

PCT= Posterior Capsule Tear.

PK= Penetrating keratoplasty.

RSB = Residual Stromal Bed.

RK = Radial Keratotomy.

SPC = Scheimpflug Photograph of the Cornea.

TP = Thinnest Point.

 μ m= microns.

UV= Ultra Violet.

USP = Ultrasound Pachymetry.

UBM =Ultrasound Biomicroscopy.

WTW=White To White distance.

•

INTRODUCTION

The Pentacam is a rotating camera that offers a noninvasive way of assessing the anterior segment of the eye (Jain et al., 2007).

It's considered to be a tomographer, which is different than topography. A tomographer enables a mathematical reconstruction of the internal picture of the element studied, whereas topographers study its surface exclusively (**Grewal**, 2008).

This is a new anterior segment imaging device that scans and measures the cornea and the anterior segment by performing 5 "penta" functions:

1)Scheimpflug imaging

The Pentacam images the anterior segment of the eye with a Scheimpflug camera that rotates around a common axis, taking 50 three-dimensional image slices with the same center point. This approach allows all of the slices to be reregistered by their common point so that the normal fixation saccadic eye movements do not affect the precision of the result (**Holladay et al., 2005**). A manual measurement function is integrated to measure at each location in the anterior segment.

2)Topography

Topographic maps of the anterior and posterior corneal surfaces, evaluates 500 measurements points from each slit image, totaling 25,000 true elevation points, including tangential and sagittal (axial) curvature and limbus-to-limbus elevation (Sinjab, 2009).

The Pentacam is the only instrument that measures and analyses the center of the cornea precisely. This offers a significant advantage in accurate corneal topography measurements prior to refractive surgery (Grewal et al., 2008).