Percutaneous Shunting For Fetal Lower Urinary Tract Obstruction: A Case-Series Study

Thesis

Submitted for partial fulfillment of Master Degree in Obstetrics and Gynecology

Noha Mohamed Halawa

M.B.B.CH (Dec.2011) Faculty of Medicine Ain-Shams University

Under the supervision of

Professor / Ahmed Ramy Mohamed Ramy

Professor of Obstetrics and Gynecology Head of Ultrasound Fetal Special Care Unit Faculty of Medicine, Ain-Shams University

Dr / Radwa Mansour Mohamed

Lecturer in Obstetrics and Gynecology Faculty of Medicine, Ain-Shams University

بسم الله الرحمن الرحيم

ثُمَّ جَعَلْنَاهُ نُطْفَةً فِي قَرَارٍ مَّكِينِ • ثُمَّ حَلَقْنَا النُّطْفَةَ عَظَامًا عَلَقَةً فَحَلَقْنَا الْمُضْغَةَ عِظَامًا فَكَسَوْنَا الْمُضْغَةَ عِظَامًا فَكَسَوْنَا الْعِظَامَ لَحْمًا ثُمَّ أَنشَأْنَاهُ خَلْقًا آخَرَ فَتَبَارَكَ فَكَسَوْنَا الْعِظَامَ لَحْمًا ثُمَّ أَنشَأْنَاهُ خَلْقًا آخَرَ فَتَبَارَكَ اللَّهِ فَكَسَوْنَا الْعِظَامَ لَحْمًا ثُمَّ أَنشَأْنَاهُ خَلْقًا آخَرَ فَتَبَارَكَ اللَّهِ فَلَا اللَّهُ أَحْسَنُ الْخَالِقِينَ "

صدق الله العظيم سورة المؤمنون آية (١٣-١٤)

First and above all, I pray thanking Allah for his blessing and giving me the effort to complete and achieve this work.

I would like to express my deep gratitude, thanks, and respect to our eminent **Professor / Ahmed Ramy Mohamed Ramy**, Professor of Obstetrics and Gynecology and Head of Ultrasound Fetal Special Care Unit, Faculty of Medicine, Ain Shams University for granting me the privilege of working under his direct supervision and for his great continuous encouragement and unfailing tender advice throughout this work and throughout my career.

I would like to express my thanks and respect to **Dr. Radwa** Mansour Mohamed, Lecturer in Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for the tremendous effort she has done and the meticulous revision of this work and her every single word she has taught me all over this time.

I would like also to express my deep thanks to all the Ultrasound fetal Special Care Unit staff for their support with a special utmost gratitude to **Dr. Mostafa Hassanein Mobarak** for his faithful efforts and continuous support during this work.

I would like also to express my thanks for **Dr. Sameh Micheal** for helping me with my statistical data analysis and for his kind advices.

A special last but not least utmost dedicated gratitude and acknowledgement goes to My Parents; Dr.Mohamed, Mrs.Amal, My Brothers; Amr LAli and Sisters; Nihal L.Hasnaa, for their support, love, tender care and continuous encouragement. Without them, this work wouldn't have been achieved.

Lastly, my great thanks to everyone who participated in one way or another in making this work possible.

Noha Mohamed Halawa

List of contents

Subjects	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Thesis Protocol	a
Introduction	1
Aim of work	3
Review of Literature	
Chapter (1): Normal embryological development of the lower urinary tract.	5
Chapter (2): Congenital anomalies of the lower urinary tract.	15
Chapter (3): Posterior Urethral valves.	26
Chapter (4): Modalities of treatment of posterior urethral valves.	40
Patients and Methodology	58
Results	70
Discussion	88
Summary and Conclusion	97
Recommendations	102
References	103
Arabic Summary	

List of Abbreviations

AC	Abdominal Circumference
AUV/D	Anterior Urethral Valve/Diverticulum
BPD	Bi-Parietal Diameter
BEEC	Bladder Exstrophy Epispadias Complex
CAKUT	Congenital Anomalies of
CDK	Chronic Kidney Disease
CI	Confidence Interval
COPUM	Congenital Obstructing Posterior Urethral
COLOM	Membrane
CS	Caesarian Section
ERC	Ethics Research Committee
ESRD	End Stage Renal Disease
FL	Femur Length
GFR	Glomerular Filtration Rate
HC	Head Circumference
LUTO	Lower Urinary Tract Obstruction
MDS	Mullerian Duct System
Nd:YAG	Neodymium, y hrium-alminum garent
Ob/Gyn	Obstetrics and Gynecology
OR OB/Gyn	Odd's Ratio
PBS	Prune Belly Syndrome
PLUTO	Percutaneous Shunting For Fetal Lower
DDDOM	Urinary Tract Obstruction
PPROM	Prelabour Premature Rupture of
DUV	Membranes De stanian Huathuri Walana
PUV	Posterior Urethral Valve
RR	Relative Risk
TLC	Total Leucocytic Count
U/S	Ultrasound
UG Sinus	Urogenital Sinus
UPJ	Uretero-Pelvic Junction
UTI	Urinary Tract Infection

List of Abbreviations (Cont.)

VACTERL	Vertebral, Anal, Cardiac,
	Tracheoesophageal, Renal and Limb
	Anomalies
VAS	Vesico-Amniotic Shunt
VCUG	Voiding Cysto-Urethrography
VUG	Voiding Urethrogram

List of Tables

Table	Title	Page
(1)	Maternal characteristics of the allocated patients.	71
(2)	Fetal characteristics.	72
(3)	Fetal intervention and management strategy	72
(4)	Sonographic evidence of bladder refilling	72
(5)	Incidence of unwanted side effects and adverse outcomes among all the study series	73
(6)	Outcome of pregnancy	74
(7)	Comparison of patients managed conservatively or with application of vesicoamniotic shunt	75
(8)	Comparison of patients undergoing conservative or with interventional management: Numerical variables	77
(9)	Kaplan-Meier survival analysis for patients undergoing conservative or interventional management	78

List of Figures

Fig.	Title	Page
(1)	Diagram showing Indifferent stages of the external genitalia	5
(2)	Diagram showing: A. Transverse section through the urogenital ridge in the lower thoracic region of a 5-week embryo showing formation of an excretory tubule of the mesonephric system	8
(3)	Cloacal septation in human	9
(4)	Dorsal view of the bladder showing the development of the ureters, arising initially as an outgrowth of the mesonephric duct, then assume a separate entry into the bladder	11
(5)	Development of external genitalia in the male at 10 weeks all through till being a newborn	13
(6)	Ultrasound examination at 13 weeks' gestation with a sagittal view showing the typical 'keyhole'-shaped appearance of the posterior urethral valves	26
(7)	Diagram showing PUVs as result of abnormal integration of mesonephric ducts into posterior urethra	30
(8)	Sections through posterior urethra from distal to proximal showing obstructive membrane starting at roof of urethra distally and obliquely inserting proximal just beyond verumontanum	31
(9)	Ultrasonograhic view of dilated bladder with thick walls and dilated posterior urethra in a fetus at 18 weeks of gestation	34
(10)	Prenatal U/S showing typical findings of fetal LUTO	35
(11)	Sagittal MRI view of a fetus at 29 weeks of gestation shows dilated urinary bladder and posterior urethra proximal to obstruction by a posterior urethral valve	38

Fig.	Title	Page
(12)	Ultrasound examination at 13 weeks' gestation with sagittal view showing the typical 'keyhole'-shaped appearance of the posterior urethral valves and a coronal view showing fetal bilateral hydronephrosis	42
(13)	Diagram showing a 22-gauge needle inserted $-U\S$ guided- into fetal bladder for drainage.	43
(14)	Endoscopic instruments of Fetoscope.	47
(15)	Cystoscopic view of the posterior urethral valves and its laser fulguration.	47
(16)	Percutaneous insertion of the vesicoamniotic shunt (Harrison type)	50
(17)	Schematic diagram for the PLUTO trial profile	54
(18)	The guide needle and double-basket catheter set with pusher	55
(19)	Another picture for the guide needle and double-basket catheter set with pusher	55
(20)	Harrison fetal bladder shunt and a diagram illustrating its position in the fetal bladder in-utero	56
(21)	Diagram showing insertion of the vesicoamniotic shunt.	56
(22)	Percutaneous insertion of vesicoamniotic shunt (Harrison type).	57
(23)	Image of a newborn baby underwent in-utero vesicoamniotic shunt placement at 20 weeks of gestation and delivered at 37 weeks by C.S.	57
(24)	Relevant ultrasound findings.	79
(25)	Percentage of patients managed conservatively or interventionaly.	79
(26)	Percentage of patients showing sonographic evidence of bladder refilling.	80
(27)	Overall incidence of unwanted or adverse	80

Fig.	Title	Page
	outcomes in the studied series.	
(28)	Outcome of pregnancy in the studied series.	81
(29)	Box plot showing the birth weight distribution in the studied series.	81
(30)	Box plot showing the distribution of gestational age at the end of follow-up in the studied series.	82
(31)	28-day mortality rate in the studied series.	82
(32)	Time to mortality after the procedure / inclusion in the studied series.	83
(33)	Incidence of unwanted or adverse outcomes in patients undergoing conservative or interventional management.	83
(34)	Outcome of pregnancy in patients undergoing conservative or interventional management.	84
(35)	28-day survival in babies undergoing conservative or interventional management.	84
(36)	Time to mortality in patients undergoing conservative or interventional management.	85
(37)	Box plot showing the birth weight in babies undergoing conservative or interventional management.	85
(38)	Box plot showing the gestational age at end of follow up in babies undergoing conservative or interventional management.	86
(39)	Kaplan-Meier survival curves in patients undergoing conservative or interventional management.	86

Abstract

Assessment of fetal and maternal outcomes in women who had interventions (vesicoamniotic shunting or serial ultrasound-guided vesicocentesis) to relieve their fetal lower urinary tract obstruction Vs those who underwent conservative management (follow up)

Lower urinary tract obstructions (LUTO) are caused by a narrowing at some point in the urinary tract that slows or stops the flow of urine. They are one of the most commonly identified abnormalities at the antenatal ultrasound scan with an estimated incidence of 1:250 to 1:1000 pregnant women. The majority of these abnormalities are because of obstruction, obstructive uropathy, which may occur at the uretero-pelvic junction or uretero-vesical junction or at the level of bladder neck. The most common identifiable causes of LUTO are urethral atresia and posterior urethral valves (PUVs). Other less common causes of lower urinary tract obstructions include urethral atresia (the second most common cause of lower urinary tract obstructions), anterior urethral valves, meatal stenosis, epispadias, and hypospadias.

The idea of the vesico-amniotic shunting or the PLUTO trial is the insertion of catheter with its proximal end in the amniotic fluid and its distal end in fetal urinary bladder to relieve the fetal urinary obstruction in an attempt to avoid renal parenchymal damage and chronic oligohydramnios that in turn adversely affect the pulmonary development. The indicator for immediate success of the procedure is the immediate de-compression of the distended fetal bladder. The mother is to be followed every two weeks till delivery, recording the fetal bladder dimensions, amniotic fluid volume and any observed fetal renal cystic or dysplastic changes till the baby is delivered and the obstruction is relieved surgically in post-natal life.

The most important question was the effectiveness of in-utero therapy and the correct timing, as its management constitutes an ongoing challenge in obstetric and pediatric practices. Although many suggested that prenatal intervention in cases of congenital bladder neck obstruction improves perinatal survival but when considering the effect on long-term survival with normal postnatal renal function, the results suggested that intervention have adverse sequalae (in terms of morbidity), although this finding was not statistically significant.

Keywords: PUV: Posterior Urethral Valve; Key-hole sign.

Thesis Protocol

Introduction of the protocol:

Congenital abnormalities of the urinary tract are one of the most commonly identified abnormalities at the antenatal ultrasound scan with an estimated incidence of 1:250 to 1:1000 pregnant females. This incidence depends on acquisition of pre and postnatal data and whether terminations of pregnancy, related to the condition, are included or not. The majority of these abnormalities are because of obstruction, obstructive uropathy, which may occur at the ureteropelvic junction or ureterovesical junction or at the level of bladder neck (**Diwakar et al., 2013**).

Lower urinary tract (urinary bladder outflow) obstruction (LUTO) is a relatively common congenital group of pathologies, the most common of which are urethral atresia and posterior urethral valves (PUVs). Other less common etiologies include: urethral agenesis, persistent cloaca with associated urethral stenosis. It is generally identified in the second trimester of pregnancy (18-24 weeks) when most of the pregnant females have a routine detailed fetal anomaly ultrasound scan (Morris et al., 2009).

PUVs account for one third of urinary tract anomalies detected at autopsy after termination of pregnancy. They also account for about half of the cases presenting with ultrasonographic features of LUTO. They represent membranous folds present in the posterior wall of the urethera and are classified into three types according to their location and the gross anatomical characteristics. Type I is the most frequent type and its effect depends on the severity and timing of initiation of obstruction in-utero. Other commonly associated congenital urinary tract anomalies with duplicated urethera, megalo-urethera, **PUVs** include: cryptorchidism and hypospadias. While other associated

congenital extraurinary anomalies include: cardiovascular system anomalies, scoliosis and chromosomal abnormalities (Morris et al., 2006).

The fetus with PUV is typically male unless associated with hypoperistalsis syndromes (e.g. Megacystis-Microcolon-Hypoperistalsis Syndrome) which carry a worse prognosis. They usually lead to -if untreated- megacystis, bladder wall hypertrophy, megaureter, hydronephrosis and renal dysplasia. The importance of LUTO in terms of perinatal outcome lies in its clinical course, where the long-term urethral obstruction is potentially associated with cystic renal dysplasia and abnormal renal function (glomerular and tubular) that in turn leads to severe oligohydramnios, pulmonary hypoplasia and positional limb abnormalities (Morris et al., 2006).

Fetal LUTO -if untreated- carries a mortality of up to 45% mainly due to severe oligohydramnios being associated with pulmonary hypoplasia at a crucial time of lung development (canalicular phase between 16-24weeks). Even in those who survive the neonatal period, about one third of cases may develop end-stage chronic renal impairment necessitating dialysis or renal transplantation in infancy or childhood (**Morris et al., 2006**).

Several prenatal techniques have been employed in attempts to improve the prognosis of the condition via alleviating the obstruction in utero. According to a Randomized Control Trial (RCT) published in Nov.2013, a comparative study was held between the effectiveness of conservative management and follow up of the fetus Vs the antenatal percutaneous vesico-amniotic shunting for fetal lower urinary tract obstruction (PLUTO). This RCT has proved that the PLUTO trial has an upper hand in the management of fetuses with lower urinary tract obstruction as regard their perinatal morbidity and mortality rates than that of conservative management (Morris et al., 2013).

The idea of the vesico-amniotic shunting or the PLUTO trial is the insertion of catheter with its proximal end in the amniotic fluid and its distal end in fetal urinary bladder to relieve the fetal urinary obstruction in an attempt to avoid renal parenchymal damage and chronic oligohydramnios that in turn adversely affect the pulmonary development (Kilby et al., 2004).

Other antenatal surgical attempts to relieve the fetal lower urinary tract obstruction are: ultrasound-directed serial vesicocentesis (regular insertion of a fine needle to drain the fetal bladder of urine) and fetal cystoscopy with posterior urethral valve fulguration (Morris et al., 2010).

Aim of the Work

Assessment of fetal and maternal outcomes in women who will have interventions (vesicoamniotic shunting/ serial vesicocentesis) to relieve their fetal lower urinary tract obstruction.

PROTOCOL OUTLINE:

Study Site:

Fetal-Therapy Unit, Ain-Shams University Hospitals.

Study Objectives:

Primary Objectives

The main outcome measure will be the assessment of perinatal mortality rates for fetuses undergoing (vesico-amniotic interventions stunts or vesicocentesis) for lower urinary tract obstruction.

Secondary Objectives

- 1. Assessment of maternal complications from the procedure (e.g. infection, injury to uterus, preterm labor and premature rupture of membranes).
- 2. Assessment of renal function in survivors (serum creatinine).

Study Design:

An observational, case-series study.

Target Population:

Male Fetus with ultrasonographic evidence of lower urinary tract obstruction (enlarged bladder, keyhole sign of the urinary bladder, bilateral hydronephrosis).

Study Treatment and Methodology:

After ultrasonographic diagnosis of LUTO, appropriate counselling and consent, the insertion of the vesicoamniotic shunt or serial vesicocentesis can be performed. In general terms, the woman is given some sedation and prophylactic antibiotics 2 hours prior to the procedure. The woman is scanned, and the fetal bladder is visualised. Under sterile, minimal touch technique, the percutaneous placement of the vesicoamniotic pigtail Harrison Foetal Bladder Stent is performed under ultrasound guidance. Correct placement of the shunt and viability should be noted postprocedure. Follow-up scans will be arranged at the clinicians' discretion but usually are performed no less frequently than every 2 weeks. If not feasible, then plan for serial vesicocentesis will be arranged usually every fortnight.

Selection of patients:

Inclusion Criteria:

- 1- An informed consent is given.
- 2- Patients able to understand the information provided.
- 3- Pregnant female with single viable male foetus in first or second trimester.
- 4- Evidence of isolated lower urinary tract obstruction (LUTO) by ultrasound imaging in the first and second trimester.