Congenital Heart Disease Evaluation by Structural and Functional Magnetic Resonance Imaging

Thesis
Submitted for partial fulfillment
Of MD Degree in Radiodiagnosis

By:

Inas El-Ghoniemy

MSc.Radiodiagnosis
Faculty of Medicine, Cairo University

Supervised by:

Prof. Mervat Shafik ElSahragty

Professor of Radiodiagnosis Faculty of Medicine Cairo University

Prof. Sonia Ali El-Saiedi

Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Hassan Ali El-Kiki

Assistant Professor of Radiodiagnosis Faculty of Medicine Cairo University

2008

Abstract

Cardiac MRI has become a clinically useful supplement to Echo and conventional x-ray angiography in the diagnostic work-up of patients with congenital heart disease.

The aim of this work is to evaluate the role of MR imaging in assessment of morphological (intra and extracardiac anatomy) and functional parameters (whenever possible) of congenital heart diseases.

The study was conducted on 40 patients including both pediatric (31 patients) and adult patients (9 patients). The patients were referred from the cardiology department, Kasr El Aini Hospital and the Children Hospital (Abu El Reesh), Cairo University. All patients were submitted to both echocardiographic examination and MRI study. Cardiac catheterization was performed in 13 cases.

Conventional spin echo, b-FFE/BH and CE-MRA were done for the patients. Ventricular volumes were calculated for a selected group of patients. MRI results were comparable to Echo and cardiac catheterization.

Key words: MRI-congenital heart disease-Functional MRI-Echocardiography-Cardiac cathetrization

Acknowledgment

I would like to express my deepest gratitude and appreciation to Prof. Dr. Mervat Shafik, Professor of Radiodiagnosis, Faculty of Medicine-Cairo University and to Dr. Hassan Ali El Kiki, Assistant Professor of Radiodiagnosis, Faculty of Medicine-Cairo University for their generous help, valuable guidance and great care throughout this work.

I would like to express my sincere appreciation to Dr. Sonia Ali EL Saiedi, Professor of Pediatrics, Faculty of Medicine-Cairo University for her co-operation throughout this work.

I would like to express my thanks and gratitude to all the MRI technician staff for their patience and help to make this work a reality.

I would like to express not only my thanks and gratitude to the patients and their parents for their cooperation but also my prayers for the patients to enjoy a happy and healthy life.

List of contents

-Introduction and Aim of work	1
-Embryology of the cardiovascular system	4
-Review of Literature	29
-Pathological anatomy of congenital heart lesions	29
And their magnetic resonanc	
-Cardiac axis and visceral situs	30
-Atria	31
-Situs abnormalities	32
-Systemic venous connection	36
-Pulmonary venous connections	37
-Total anomalous pulmonary venous connection	37
-Partial anomalous pulmonary venous return	38
-Ventricles and atrioventricular connections	40
-Congenitally corrected transposition of the great vessels	42
-Complete transposition of the great vessels	44
-Partial transposition of the great vessels,	47
Double outlet right ventricle	47
-Double outlet left ventricle	49
-Cardiotyping	49
-Tricuspid atresia	51
-Hypoplastic left heart syndrome	53
-Hypoplastic right heart syndrome	55
-Ebstein malformation	56
-Single ventricle	58
-Atrioventricular septal defect	58
-Partial Atrioventricular septal defect	59
-Tetralogy of Fallot	60
-Pulmonary atresia	66
-Right ventricular outflow tract obstruction	68
-Truncus arteriosus	69

-Aortopulmonary septation	72
-Ventricular septal defect	73
-Atrial septal defect	78
-Patent ductus arteriosus	83
-Valvular aortic stenosis	85
-Supravalvular aortic stenosis	86
-Bicuspid aortic valve	86
-Coarctation of the aorta	87
-Abnormal branching of the aorta/Vascular ring	92
-Adult congenital heart disease	95
-Applications of MRI/MRA in Aortic coarctation, Recoarctation	96
and aneurysm	
-Atrial and ventricular septal defects	98
-Repaired Tetralogy of Fallot	98
-Ebstein anomaly	99
-Transposition of the great arteries	99
-Techniques of cardiovascular magnetic resonance	102
imaging	
-Patients and Methods	132
-Results	139
-Case Presentation	160
-Discussion	200
-References	220

List of Figures

		Page
Fig 1	Embryo showing the heart in the pericardial cavity	4
Fig 2	Cephalic end of an early somite embryo	5
Fig 3	Formation of the cardiac loop	6
Fig 4	Primary interventricular foramen	7
Fig 5	Normal atrial septum formation	9
Fig 6	Formation of the interventricular septum	10
Fig 7	The heart of a 35-day embryo	10
Fig 8	Formation of the atrioventricular valves	11
Fig 9	Persistent common atrioventricular canal	12
Fig 10	Normal heart	13
Fig 11	Heart of a 7-week embryo	15
Fig 12	Embryo at the end of 7 th week	15
Fig 13	Normal heart, VSD	16
Fig 14	Tetralogy of Fallot	17
Fig 15	Persistent truncus arteriosus	17
Fig 16	Transposition of the great vessels	18
Fig 17	Aortic valvular stenosis, Aortic valvular atresia	19
Fig 18	Changes from original aortic arch system	22
Fig 19	Coarctation of the aorta	23
Fig 20	Abnormal origin of RT subclavian artery	24
Fig 21	Double aortic arch	24
Fig 22	Fetal circulation before birth	27
Fig 23	Human circulation after birth	28
Fig 24	Pulmonary artery branching in Rt and LT sided	33
	isomerism	
Fig 25	Right sided isomerism	34
Fig 26	Left sided isomerism	34
Fig 27	Heterotaxy syndrome	34
Fig 28	Left sided superior vena cava	37
Fig 29	PAPVR in a 64-year-old woman	39
Fig 30	PAPVR in a 45-year-old woman	39
Fig 31	PAPVR in a 43-year-old woman	40
Fig 32	Corrected transposition of the great arteries	44
Fig 33	Complete transposition	46
Fig 34	Ten year old boy with D-TGA	46
Fig 35	Arterial switch procedure for D-TGA	47
Fig 36	Double-outlet right ventricle	48
Fig 37	Tricuspid atresia	53
Fig 38	Hypoplastic left heart syndrome	54

Fig 39	Ebstein anomaly	56
Fig 40	Ebstein anomaly	57
Fig 41	Atrioventricular septal defect	60
Fig 42	Atrioventricular septal defect	60
Fig 43	Five month old female with TOF	62
Fig 44	Pulmonary atresia and nonconfluent LPA	62
Fig 45	Aneurysmal dilatation of LPA and RPA	62
Fig 46	Enlarged aortopulmonary collateral vessel	63
Fig 47	VSD patch and overriding aorta	63
Fig 48	Residual RPA and MPA stenosis	64
Fig 49	Atretic MPA segment	64
Fig 50	Pulmonary atresia with VSD	67
Fig 51	Thickened and domed pulmonary valve	68
Fig 52	Truncus arteriosus type I	71
Fig 53	Aortopulmonary window	72
Fig 54	Muscular ventricular septum	74
Fig 55	Membranous VSD (black blood technique)	74
Fig 56	Membranous VSD (white blood technique)	75
Fig 57	Membranous VSD in a 24 year old man with TOF	75
Fig 58	Crista supraventricularis and supracristal	76
	ventricular septum	
Fig 59	Supracristal ventricular septal defect	77
Fig 60	Secundum ASD	79
Fig 61	Sinus venosus ASD	80
Fig 62	Normal atrial septum	81
Fig 63	Ostium secundum ASD, Amplatzer septal occluder	82
Fig 64	PDA in a 64 year old woman	84
Fig 65	Aortic valvular stenosis	85
Fig 66	Aortic coarctation	89
Fig 67	Aortic hypoplasia and coarctation	89
Fig 68	Thirteen year old girl with aortic coarctation	90
Fig 69	Aortic pseudoaneurysm	90
Fig 70	Recurrent coarctation	91
Fig 71	RT aortic arch with right sided PDA	93
Fig 72	RT aortic arch with aberrant LT subclavian artery	94
Fig 73	Double aortic arch (vascular ring)	95
Fig 74	Multiple sequential transverse MR images	107
Fig 75	Coronal and sagittal oblique images	108
Fig 76	Left ventricular 2 chamber view	109
Fig 77	Two and four chamber view	109
Fig 78	MRI short axis view	110
Fig 79	Aortic arch view	111

Fig 80	VEC MRI of differential LT and RT pulmonary	122
	arterial blood flow	
Fig 81	VEC MRI of shunt quantification	124
Fig 82	Pulmonary atresia and nonconfluent LPA	127
Fig 83	MIP and surface rendering in aortic coarctation	128
Fig 84	Surgically created aortic coarctation in swine	130
Fig 85	Atrial septum occluder	131
Fig 86	Case 1: Axial b-FFE/BH, aortic coarctation	161
Fig 87	Case 1: Sagittal oblique b-FFE/BH, aortic coarctation	162
Fig 88	Case 1: Axial b-FFE/BH, LT ventricle hypertrophy	162
Fig 89	Case 2: Axial b-FFE/NBH, double aortic arch	165
Fig 90	Case 2: Axial CTA, double aortic arch	166
Fig 91	Case 3: CE-MRA, subaortic stenosis and aortic	169
	coarctation	
Fig 92	Case 4: Axial b-FFE/BH, secundum ASD	170
Fig 93	Case 4: Axial conventional spin echo, secundum ASD	171
Fig 94	Case 5: Axial conventional spin echo, b-FFE/BH,	173
	D-TGA	
Fig 95	Case 5: Axial conventional spin echo, VSD	174
Fig 96	Case 5: b-FFE/BH, Aorta arising from the	174
	RT ventricle, D-TGA	
Fig 97	Case 6: Axial conventional spin-echo,	
	PA to the right and aorta to the left	176
Fig 98	Case 6: Axial conventional spin echo, CCTGA	176
Fig 99	Case 6: Axial conventional spin echo,	177
	subpulmonic VSD	
Fig 100	Case 7: Axial conventional spin echo,	179
	Hypoplasia of LPA	
Fig 101	Case 7: Axial conventional spin echo,	180
	normal sized MPA and RPA	
Fig 102	Case 7: Axial conventional spin echo,	180
	non visualized LPA	
Fig 103	Case 7: Coronal b-FFE/NBH, non visualized LPA	181
Fig 104	Case 8: Axial b-FFE/BH, Pulmonary atresia	183
	and MAPCAS	
Fig 105	Case 8: Axial b-FFE/BH Pulmonary atresia	183
	and MAPCAS	
Fig 106	Case 8: Sagittal oblique b-FFE/BH, MAPCA	184
Fig 107	Case 8: Axial b-FFE/BH malalignement VSD	184
Fig 108	Case 9: Axial conventional spin echo	186
	Truncus arteriosus Type II	
Fig 109	Case 9: Axial conventional spin echo,	186
	with average sized RT and LT PAs	

Fig 110	Case 9: Sagittal oblique conventional spin echo,	187
	Common trunk overriding VSD	
Fig 111	Case 10: Axial b-FFE/BH, Ebsein anomaly	189
	Thrombi in right atrium and right ventricle	
Fig 112	Case 10: Axial b-FFE/BH Ebstein anomaly	189
Fig 113	Case 11: CE-MRA, tortuous aorta	191
Fig 114	Case 11: Axial conventional spin echo,	192
	Persistent VSD with malplaced VSD patch	
Fig 115	Case 12: CE-MRA of Takayasu arteritis	194
Fig 116	Case 12: CE-MRA of Takayasu arteritis	195
Fig 117	Case 12: CE-MRA of Takayasu arteritis	195
Fig 118	Case 13: Axial conventional spin echo,	198
	transposed great vessels	
Fig 119	Case 13: Axial conventional spin echo,	198
	dominant Lt ventricle and hypoplastic	
	right ventricle	
Fig 120	Case 13: CE-MRA, TAPVD into SVC	199
Fig 121	Case 13: Coronal conventional spin echo,	199
	Hepatic veins and IVC drain into	
	LT atrium, LT sided liver	

List of Tables

Number	Title	Page
No. 1		139
	Classification of patients according to age and gender	
No. 2	Classification of patients according to the referring	139
	hospital	
No. 3	Classification of different MRI techniques performed	140
	to the patients	
No. 4	Categorization of patients according to MRI	140
	techniques	
No. 5	Number of other imaging modalities done	141
No. 6	Classification of patients according to the pathologic	141
	diagnosis	
No. 7	Classification of the pediatric patients according to	142
	the pathologic diagnosis	
No. 8	Classification of the adult patients according to the	142
	pathologic diagnosis	
No. 9	Patients with aortic coarctation (7 patients)	143
No. 10	Pediatric patients with hypoplasia of different parts of	145
	the aorta (3 patients)	
No. 11	Pediatric patients with postoperative aortic	146
	coarctation procedure (3 patients)	
No. 12	Pediatric patients with vascular rings (2 patients)	147
No. 13	TOF patients with MPA stenosis and normal branch	148
	PAs(3 patients)	
No. 14	TOF patients with RVOTO, pulmonary atresia or	149
	with various patterns of hypoplasia or atresia of MPA	
	or branch PAs(5 patients)	
No. 15	Patients with septal defects (5 patients)	151
No. 16	Patients with A-V canal (4 patients)	152
No. 17	Patients with Truncus Arteriosus (3 patients)	154
No. 18	Patients with other cardiac pathologies (7 patients)	155
No. 19	Ventricular function assessment	157

List of abbreviations

MRI Magnetic resonance imaging

3D 3-Dimensional

CMRI Cardiovascular magnetic resonance imaging

CHD Congenital heart disease
CHDs Congenital heart diseases

ECG Electrocardiogram
A-V Atrioventricular
VA Ventriculoarterial
ASD Atrial septal defect

VSD Ventricular septal defect

PEAR Phase encoded artifact reduction

FFE Fast field echo GRE Gradient echo

SNR Signal to noise ratio

IR-FSE Inversion recovery fast spin echo

FSE Fast spin echo RV Right ventricle LV Left ventricle

FFE-SENSE Fast field echo sensitivity encoding

TR Repitition time TE Echo time

SSFP Steady state free precession VEC Velocity encoded cine PA Pulmonary artery

TEE Transoesophageal echocardiography
TTE Transthoracic echocardiography

CEMRA Contrast enhanced magnetic resonance angiography

3D-GE 3-Dimensional gradient echo

3D-MRA
3-Dimensional magnetic resonance angiography
XMR
X-ray fluoroscopy, Magnetic resonance scanner

DIR-FSE Double inversion recovery fast spin echo

ASO Atrial septum occluder

LT Left RT Right

RA Right atrium

LA Left atrium

IVC Inferior vena cava PV Pulmonary vein

Ao Aorta

RVOT Right ventricle outflow tract LVOT Left ventricle outflow tract

HV Hepatic vein

SVC Superior vena cava IVC Inferior vena cava

TAPVC Total anomalous pulmonary venous connection
TAPVD Total anomalous pulmonary venous drainage
PAPVC Partial anomalous pulmonary venous connection
PAPVR Partial anomalous pulmonary venous return
APVD Anomalous pulmonary venous drainage

TOF Tetralogy of Fallot

TGA Transposition of the great arteries

CCTGA Congenitally corrected transposition of the great arteries

TR Tricuspid regurge

PVS Pulmonary valve stenosis

PS Pulmonary stenosis
PR Pulmonary regurge

fRV Functional right ventricle aRV Atrialized right ventricle

PAs Pulmonary arteries
LPA Left pulmonary artery
RPA Right pulmonary artery
APcol Aorto pulmonary collateral
MPA Main pulmonary artery
Desc Ao Descending aorta

Asc Ao Ascending aorta
PDA Patent ductus arteriosus

AS Aortic stenosis
SAS Subaortic stenosis

b-FFE/BH Balanced fast field echo/breath hold b-FFE/NBH Balanced fast field echo/non breath hold

MIP Maximum intensity projection

FOV Field of view

NSA Number of signal averages

CTA Computed tomography angiography RV-PA Right ventricle-Pulmonary artery

MAPCAS Major aortopulmonary collateral arteries

CCD Color coded Doppler
DILV Double inlet left ventricle
DOLV Double outlet left ventricle

PG Pressure gradient

CCA Common carotid artery IVS Interventricular septum

RVOTO Right ventricle outflow tract obstruction

BT Blalock-Taussig

DORV Double outlet right ventricle

EDV End diastolic volume
ESV End systolic volume
EF Ejection fraction
SV Stroke volume
CO Cardiac output

RT Real time

3DE 3 dimensional echocardiography
PCI Percutaneous coronary intervention
CABG Coronary artery bypass grafting

Cath Catheterization

Introduction & Aim of work

Introduction and Aim of the Work

Cardiac MRI has become a clinically useful supplement to ECHO and conventional x-ray angiography in the diagnostic work-up of patients with congenital heart disease. Three dimensional (3D) sequences are capable of depicting both intracardiac and extracardiac structures with high accuracy in adults and adolescents (Fenchel et al., 2006).

Cardiac magnetic resonance (CMR) of the pediatric patient involves a unique set of technical challenges beyond those encountered in adult imaging. Anatomical structures are smaller, demanding greater spatial resolution; heart rates are high, demanding greater temporal resolution; and patients may be sedated or uncooperative, rendering breath-hold imaging strategies useless. Despite these difficulties, CMR offers several advantages over other imaging modalities, including soft tissue contrast, lack of ionizing radiation, a capacity for true three-dimensional imaging, accurate flow quantification, and freely selectable imaging planes. These advantages and continued advances in MR hardware, software, and imaging techniques are bringing CMR into more widespread use in pediatric cardiology (Simonetti and Cook, 2006). Cardiac magnetic resonance is increasingly being used not only for the initial investigation of CHD but also as follow-up after surgery or catheter-guided intervention (Christian et al., 2007).

Echocardiography is currently used as the initial noninvasive imaging study for almost all patients with known or suspected CHD. MRI is unlikely to replace echocardiography as the first diagnostic procedure because of the portability, universal availability, and low cost. MRI can demonstrate cardiovascular anatomy without the limitation of acoustic windows or ultrasound penetration of the body. Therefore the morphology of some regions, such as the supracardiac region and the posterior aspect of the heart, can be