

كلية العلوم / قسم الكيمياء

Using of Polyurethane as Surface Coating Material

A Thesis Submitted for fulfillment of the requirements for the Degree of Master In Science (Chemistry)

By

Ahmed Hamed Ammar Sayed

B. Sc. (Chemistry), Ain shams University

To

Department of Chemistry Faculty of Science Ain shams University

2012

البولى يوريثان كمادة طلاء سطحية

رساله مقدمه للحصول على درجه الماجستير في العلوم (كيمياء)

مقدمه من

الطالبم/ أحمد حامد عمار سيد بكالوريوس العلوم (كيمياء) جامعه عين شمس

الي

کلیه العلوم — هسم الکیمیاء جامعه عین شمس

2012

APPROVAL SHEET FOR SUBMISSION

• Title of [M. Sc.] Thesis:

Using of polyurethane as surface coating material

• Name of the Candidate:

Ahmed Hamed Ammar Sayed

B. Sc. (Chemistry), Ain shams University (2006)

This thesis has been approved for submission by the supervision:

1- Dr. Gamal Abdel-Aziz Meligi

Assist Professor of organic chemistry, Faculty of Science, Ain shams University.

2- Dr. Hussein Hussein Elnahas

Assist Professor of Radiation Chemistry - National Center for Radiation Research and Technology (NCRRT)-Atomic Energy Authority.

Head of Chemistry Department Prof. Dr. Maged Shafik Antonious

Acknowledgement

Praise is to Allah, who guided me to do this; and in no way could I have been guided, unless Allah has guided me.

Heartily, I wish to express my deep thanks and gratitude to *Dr. Gamal Abdel-Aziz Meligi*, Assist Professor of organic chemistry, Faculty of Science, Ain shams University, for his supervision, revision of the thesis and for his sincere advice.

Great thanks and gratitude to *Dr. Hussein Hussein Elnahas*, Assist Professor of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for valuable helpful discussion, theoretical and experimental advice, and encouragement during the execution of this thesis.

I wish to express my thanks to the Department of Radiation Research of Polymer Chemistry (NCRRT), Egyptian Airports Company (EAC) –Ministry of Civil Aviation, Department of Chemistry–Faculty of science –Ain Shams university and also, Grandy Company of chemistry industrial - Egypt.

My Parents have a major influence along with their help in attaining my achievements. I would like to say thanks to them for the values and principles they have brought me on and in fact I dedicate this thesis to them.

Ahmed Hamed Ammar

ABBREVIATION

Symbol	Nomenclature
PU	Polyurethane
TDI	Toluene diisocyanate
polyol	A substance containing several hydroxyl groups
	, A diol, triol and tetrol contain 2,3 and 4
	hydroxyl groups respectively.
VAcVe	vinyl acetate versatic ester copolymer
Mg.silicate	magnesium silicate
CaCO ₃	calcium carbonate
TiO_2	titanium dioxide
rpm	round per minute (stirring rate)
Phr	per hundred part
T_b	Tensile strength at break
E_b	Elongation at break
Mrad	Mega-rad= 10 KGy
KGy	Kilo-gray
EB	Electron beam
DOP	Dioctyl-phathalate
Shore A	Is used with relatively soft material.
Shore D	Is used with slightly harder material.
Composite	A putting together of parts to form a whole.
Solubility	Capable of being dissolved in a liquid.

Crosslinking	The establishment of chemical bonds between
	polymer molecule chains. It may be accomplished by heat, vulcanization, irradiation or the addition of a suitable chemical agent.
Degradation	The state of being reduced in polymer molecular chain. It may be accomplished by heat, vulcanization, irradiation or the addition of a suitable chemical agent.
PU- modeling clay	Polyurethane component mixed with either magnesium silicate or wood powder.
Two-pack	(Miscellaneous Technologies / Building) (of a paint, filler, etc.) supplied as two separate components, for example a base and a catalyst, that are mixed together immediately before use

Contents

List of figures and tables	i
Aim of work	vi
Summary	vii
CHAPTER (I): Introduction & Literature Review	
1. Introduction	1
1.1. Polyurethane synthesis	2
1.1.1. Flexible polyurethane foam	4
1.1.2. Catalyst for polyurethane	8
1.1.3. Cure rate	10
1.1.4. Raw materials	11
1.1.4.a. Isocyanates	11
1.1.4.b. Polyols	22
1.1.4.c. Alkyds	26
1.1.4.d. Castor oil	29
1.1.5. Vinyl acetate versatic ester copolymer	31
1.1.6. Additives	32
1.1.7. Extenders, fillers, and supplementary pigments	37
1.2. Manufacturing	39
1.2.a. Dispensing equipment	41
1.2.b. Tooling	42
1.3. Effect of Radiation	42
1.3.1. Radiation-curing polymers	44

1.4. Coating with polyurethane	47
1.4.1. Polyurethane putties for wood repairing and	
cracks injection	54
1.4.2. Modeling of polyurethane composites mixing	55
cycles	
1.4.3. Polyurethane paint for outdoor application	56
CHAPTER (II): Materials & Experimental	
Techniques	
2. Materials & Techniques	63
2.1. Materials	63
2.2. Experimental Techniques	64
2.2.1. Preparation of self hardening-modeling polyuret-	
-hane for wood repairing and cracks injection	64
2.2.2. Preparation of polyurethane paint for outdoor	
application	66
2.2.3. Irradiation instruments	66
2.2.3. a. Gamma cell	66
2.2.3. b. Electron Beam accelerator	68
2.2.3. c. Direct sun light exposure	70
2.2.4. Tensile strength and elongation at break	70
2.2.5. Compressive strength	71
2.2.6. Film recovery	72
2.2.7. Tear strength	72

2.2.8. Surface hardness	73
2.2.9. Water absorption	73
2.2.10. Solubility in solvent	73
2.2.11. Thermal Ageing	74
2.2.12. Scanning Electron Microscope (SEM) Analysis	74
CHAPTER (III): Results & Discussion	
3. Results and Discussion	75
3.1.1. Polyurethane modeling –clay processing time	75
3.1.2. Morphology of polyurethane modeling-clay	77
3.1.3. Factors affecting polyurethane modeling-clay	
properties	79
3.1.3.a. Effect of toluene diisocyanate	79
3.1.3.b. Effect of radiation hardness and	0.6
compressive strength	82
3.1.3.c. Effect of radiation on water absorption of	o =
PU-modeling clay	85
3.1.4. Application of polyurethane modeling-clay	87
3.1.4.a. Wood repairing	87
3.1.4.b. Cracks injection	88
3.1.4. c. Architectural views	89
3.2. Preparation of polyurethane paint for outdoor	0.0
application	90
3.2.1. Factors affecting the properties of polyurethane	.
paint	91

3.2.1.a. Effect of different types of polyols	91
3.2.1.b. Effect of different types of fillers	97
3.2.1.c. Effect of solvent and plasticizer	102
3.2.2. Effect of high energy radiation	105
3.2.3. Environmental and Aging properties	109
3.2.3.a. Effect of Temperature	109
-Strength properties at elevated temperature	113
-Continued crystal growth	114
3.2.4. Application of the prepared polyurethane paints	115
3.2.4.a. Flooring hard	115
3.2.4.b. Semi-hard for wood and metals	116
3.2.4.c. Elastic for sporting and athletic track	116
References	117
Summary in Arabic	

List of Figures, Tables and Schemes

No. of Figures	Title of figure	No. of Page
(1)	Effect of time on surface hardness of PU modeling clay (Modeling-curing time)	76
(2)	Scanning electron microscope of PU modeling clay	77
(3)	Effect of TDI percent in TDI / polyol ratio on surface hardness of PU-modeling clay	80
(4)	Effect of TDI percent in TDI / polyol ratio on compressive strength of PU-modeling clay	81
(5)	Effect of different sources of radiation on surface hardness of PU-modeling clay full cure.	83
(6)	Effect of different sources of radiation on compressive strength of PU-modeling clay full cure.	84
(7)	Effect of irradiation dose of gamma ray on water absorption of PU-modeling clay.	86
(8)	Photographic views show the application of PU- modeling clay	87,88,89
(9)	Effect of different types of polyol on surface hardness of polyurethane	93

(10)	Effect of different types of polyol on tensile strength (T _b) of polyurethane	94
(11)	Effect of different types of polyol on elongationat break (E _b) of polyurethane	95
(12)	Effect of polyol percent on tear strength of polyurethane	96
(13)	Effect of different types of filler on surface hardness of polyurethane	98
(14)	Effect of different types of filler on tensile strength (T _b) of polyurethane	99
(15)	Effect of concentration of different types of filler on elongation at break (E_b) of polyurethane	100
(16)	Effect of different filler concentration (phr) on tear strength of polyurethane	101
(17)	Effect of solvent on film recovery of polyurethane	103
(18)	Effect of plasticizer on film recovery of polyurethane	104
(19)	Effect of gamma irradiation dose on surface hardness of polyurethane	106
(20)	Effect of gamma irradiation dose on film recovery of polyurethane	107
(21)	Effect of gamma irradiation dose on tear strength of polyurethane	108

List of Figure &Tables

(22)	Effect of aging time on surface hardness of polyurethane	110
(23)	Effect of aging time on tensile strength (T _b) of polyurethane	111
(24)	Effect of aging time on elongation at break (E_b) of polyurethane	112
(25)	Photographic views show the application of polyurethane paints	115,116
No. of tables	Title of tables	No. of Page
(1)	Typical reactions and reaction conditions for isocyanates	14
(2)	Composition of major oils used in surface coatings	30
(3)	Some typical extenders	39
(4)	Blocked Isocyanates for One Component System	51
(5)	Typical Formulation of Polyurethane- Modeling Clay	65
(6)	Typical formulation of polyurethane paint based on polyether polyol	90

No. of Scheme	Title of Scheme	No. of Page
(1)	Equations for preparation, chain extension, and curing of polyurethanes.	8
(2)	Reactions used in the manufacture of commercial isocyanates.(a) TDI. (b) PMDI and MDI. (c) Aliphatic triisocyanate	14
(3)	Addition of alcohols to isocyanates.	15
(4)	Addition of primary amines to isocyanates.	15
(5)	Reaction of water with isocyanates.	16
(6)	Reaction of urethanes with isocyanates leading to allophanates.	16
(7)	Reaction of ureas with isocyanates leading to biurets.	17
(8)	Formation of isocyanurates.	17
(9)	Formation of uretdiones.	18
(10)	HDI biuret HDI isocyanurate HDI uretdione.	20
(11)	Reactions used in the manufacture of macroglycols.	23

List of Figure & Tables

(12)	Schematic representation of glycerol alkyd polymer formation.	28
(13)	The reaction pathway for the preparation of urethane derivative of polypropylene glycol.	35
(14)	A possible reaction between the free isocyanate groups in urethane derivative of PPG and cellulosic sisal fiber.	36
(15)	(I) The reaction pathway for the formation of HTPB-TDI urethane (II)The reaction for formation of Lignin-HTPB Copolyurethane.	37
(16)	Typical diisocyanates used in coatings resins.	48
(17)	Reactions of macrocyclic ureas used as masked diisocyanates.	52