Immunomodulatory Effect of 1,25Dihydroxyvitamin D3 in-vitro on Interleukin-10 Secretion by Peripheral Blood Mononuclear Cells in Normal Population

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Nora Hafez Abd AL-Rahman Hafez

M.B.B.CH

Faculty of Medicine - Ain Shams University

Supervised by

Professor/ Aisha Yassin Abdel Ghaffar

Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor/ Dina Ahmed Soliman

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor/ Dina Aly Mohamed Aly Ragab

Lecturer of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Acknowledgment

All praise be to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

My deepest and warmest gratitude to my great supervisor **Prof. Dr. Aisha Yassin Abdel Ghaffar,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, who in addition to her valuable guidance and supervision, has provided me with a great deal of support, encouragement and knowledge.

I would like to express my great appreciation and thanks to **Dr. Dina Ahmed Soliman**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. It was an honor to me to carry out this work under her continuous guidance.

I would like to record my cardinal thanks to Or. Dina Aly Mohamed, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her great care, valuable instruction, constant help and helpful advice.

Nora Hafez

Contents

Subjects Page		
List of Abbreviations	I	
List of Tables		
List of Figures	V	
• Introduction	1	
Aim of the work	3	
• Review of literature:		
Chapter (1): Vitamin D	4	
Chapter (2): Vitamin D and immune syste	m17	
Chapter (3): Interleukin 10 (IL-10)	25	
Subjects and methods	31	
• Results	47	
Discussion	60	
Summary and Conclusion	67	
Recommendations	71	
References	72	
Arabic Summary		

List of Abbreviations

Abb.		Full term	
25(OH) D	:	25-hydroxyvitamin D	
$1,25(OH)_2D$:	1, 25-dihydroxyvitamin D	
1α hydroxylase	:	1 alfa hydroxylase	
ALT	:	Alanine aminotransferase	
ANOVA	:	Analysis of variance test	
APCs	:	Antigen presenting cells	
AST	:	Aspartate aminotransferase	
BMI	:	Body mass index	
CD	:	Cluster of differentiation	
CYP27B1	:	Cytochrome P450 family 27 subfamily	
		B member 1	
DCs	:	Dendritic cells	
DNA	:	Deoxyribonucleic acid	
EDTA	:	Ethylene diamine tetra acetic acid	
ELISA	:	Enzyme-linked immunosorbent assay	
FGF-23	:	Fibroblast growth factor-23	
IBD	:	Inflammatory bowel disease	
IDDM	:	Insulin-dependent diabetes mellitus,	
		type 1 diabetes	
IFN-γ	:	Interferon gamma	
Ig	:	Immunoglobulin	
\mathbf{IL}	:	Interleukin	
IL-10 R1	:	Interleukin 10 receptor 1	
IL-10 R2	:	Interleukin 10 receptor 2	
JAK	:	Janus kinase	
LPS	:	Lipopolysacchaide	

MHC MS Multiple sclerosis NK Natural killer cells PAMPs Pathogen associated molecular patterns PBMCs Phosphate buffer saline PHA Phytohemagglutinin PTH Parathormone RPMI Roswell Park Memorial Institute RXR Retinoic X receptor SA-HRP Streptavidin-horseradish peroxidase SD Standard deviation SLE Systemic lupus erythematosus SPSS Statistical package for Social Science STAT Signal transducer and activator of transcription TGF-β Transforming growth factor beta Th Th-leper lymphocytes TLR Toll-like receptors TMB Tetramethylbenzidine TNF-α Tumor necrosis factor alpha TNF-β Tumor necrosis factor beta T-reg T-regulatory lymphocytes Tyk2 Tyrosine kinase 2 UVR Ultraviolet rays VDR VItamin D receptor VDREs Vitamin D response elements	Abb.		Full term	
MS : Multiple sclerosis NK : Natural killer cells PAMPS : Pathogen associated molecular patterns PBMCs : Peripheral blood mononuclear cells PBS : Phosphate buffer saline PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor		:		
NK : Natural killer cells PAMPs : Pathogen associated molecular patterns PBMCs : Peripheral blood mononuclear cells PBS : Phosphate buffer saline PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	MS	:		
patterns PBMCs : Peripheral blood mononuclear cells PBS : Phosphate buffer saline PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	NK	:	•	
patterns PBMCs : Peripheral blood mononuclear cells PBS : Phosphate buffer saline PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	PAMPs	:	Pathogen associated molecular	
PBS : Phosphate buffer saline PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor				
 PHA : Phytohemagglutinin PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	PBMCs	:	Peripheral blood mononuclear cells	
PTH : Parathormone RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	PBS	:	Phosphate buffer saline	
RPMI : Roswell Park Memorial Institute RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	PHA	:	Phytohemagglutinin	
RXR : Retinoic X receptor SA-HRP : Streptavidin-horseradish peroxidase SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	PTH	:	Parathormone	
SA-HRP Streptavidin-horseradish peroxidase SD Standard deviation SLE Systemic lupus erythematosus SPSS Statistical package for Social Science STAT Signal transducer and activator of transcription TGF-β Transforming growth factor beta Th T-helper lymphocytes TLR Toll-like receptors TMB Tetramethylbenzidine TNF-α Tumor necrosis factor alpha TNF-β Tumor necrosis factor beta T-reg T-regulatory lymphocytes Tyk2 Tyrosine kinase 2 UVR Ultraviolet rays VDR Vitamin D receptor	RPMI	:	Roswell Park Memorial Institute	
SD : Standard deviation SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	RXR	:	Retinoic X receptor	
SLE : Systemic lupus erythematosus SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	SA-HRP	:	Streptavidin-horseradish peroxidase	
SPSS : Statistical package for Social Science STAT : Signal transducer and activator of transcription TGF- β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF- α : Tumor necrosis factor alpha TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	SD	:	Standard deviation	
 STAT Signal transducer and activator of transcription TGF-β Transforming growth factor beta Th T-helper lymphocytes TLR Toll-like receptors TMB Tetramethylbenzidine TNF-α Tumor necrosis factor alpha TNF-β Tumor necrosis factor beta T-reg T-regulatory lymphocytes Tyk2 Tyrosine kinase 2 UVR Ultraviolet rays VDR Vitamin D receptor 	SLE	:	Systemic lupus erythematosus	
transcription TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor	SPSS	:	Statistical package for Social Science	
 TGF-β : Transforming growth factor beta Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF-α : Tumor necrosis factor alpha TNF-β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	STAT	:	Signal transducer and activator of	
 Th : T-helper lymphocytes TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF- α : Tumor necrosis factor alpha TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 			transcription	
 TLR : Toll-like receptors TMB : Tetramethylbenzidine TNF- α : Tumor necrosis factor alpha TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	TGF- β	:	Transforming growth factor beta	
 TMB : Tetramethylbenzidine TNF- α : Tumor necrosis factor alpha TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	Th	:	T-helper lymphocytes	
 TNF- α : Tumor necrosis factor alpha TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	TLR	:	Toll-like receptors	
 TNF- β : Tumor necrosis factor beta T-reg : T-regulatory lymphocytes Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	TMB	:	Tetramethylbenzidine	
 T-reg T-regulatory lymphocytes Tyk2 Tyrosine kinase 2 UVR Ultraviolet rays VDR Vitamin D receptor 	TNF- α	:	Tumor necrosis factor alpha	
 Tyk2 : Tyrosine kinase 2 UVR : Ultraviolet rays VDR : Vitamin D receptor 	TNF- β	:	Tumor necrosis factor beta	
UVR : Ultraviolet raysVDR : Vitamin D receptor	T-reg	:	T-regulatory lymphocytes	
VDR : Vitamin D receptor	Tyk2	:	Tyrosine kinase 2	
1	UVR	:	Ultraviolet rays	
VDREs : Vitamin D response elements	VDR	:	Vitamin D receptor	
	VDREs	:	Vitamin D response elements	

List of Tables

Figure No	Title	Page
Table (1)	Descriptive data of all subjects as regard	48
	demographic and laboratory parameters	
Table (2)	Descriptive statistics of the three groups	49
	of serum vitamin D level as regard	
	demographic and laboratory parameters	
Table (3)	Statistical analysis of IL-10 mean levels	50
	in culture supernatants in absence and	
	presence of vitamin D in cultures of all	
	studied subjects.	
Table (4)	Statistical analysis of IL-10 mean levels	51
	in culture supernatants in absence and	
	presence of vitamin D in culture, among	
	the three groups.	
Table(5)	Statistical correlation between serum	52
	vitamin D levels of all subjects and PTH	
	levels, age and calcium levels.	
Table(6)	Statistical correlation between serum	53
	vitamin D levels of all subjects and sun	
	exposure.	

🕏 List of Tables 🗷

Figure No	Title	Page
Table(7)	Statistical correlation between serum	53
	vitamin D levels of all subjects and sex.	
Table(8)	Statistical comparison between the three	55
	groups of vitamin D levels as regard	
	PTH, calcium levels and age.	
Table (9)	Post hoc test for the three groups of	55
	vitamin D levels as regard PTH and	
	calcium levels.	
Table (10)	Statistical comparison between the three	57
	groups of vitamin D levels as regard sun	
	exposure and sex.	
Table (11)	Chi square test for the three groups of	57
	vitamin D levels as regards sun	
	exposure.	
Table (12)	Statistical correlation between the three	58
	groups of serum vitamin D levels and	
	IL-10 levels in culture supernatant in	
	absence and presence of vitamin D.	

List of Figure

Figure No	Title	Page
Figure (1)	Physiology of vitamin D	6
Figure (2)	Interaction between vitamin D and its	12
	receptor	
Figure (3)	Action of vitamin D in the immune	16
	system	
Figure (4)	Cathelicidin induction via TLRs and	19
	vitamin D	
Figure (5)	Vitamin D, antigen presentation and	23
	adaptive immunity	
Figure (6)	Stereo diagram of IL-10 dimer,	26
	monomers are shown in violet and	
	green (Disulfide bonds are in yellow)	
Figure (7)	Schematic representation of the IL-10	27
	family of cytokines. Different	
	combination of receptor chains are	
	shown. The brown plate represents a	
	hypothetical cells membrane	
Figure (8)	Isolation of peripheral blood	39
	mononuclear cells (PBMCs) using	
	ficol.	
Figure (9)	Nunc TM 96-well polypropylene	40
	MicroWell TM plates	

🕏 List of Figures 🗷

Figure No	Title	Page
Figure (10)	Significant correlation between serum	59
	vitamin D levels and IL	
Figure (11)	Non significant correlation between	59
	serum vitamin D levels and IL	

Abstract

Vitamin D has two forms: the inactive form 25(OH) D which is the main circulating form that undergoes hydroxylation in the kidney under the influence of 1α-hydroxylase enzyme to yield the biologically active form 1, 25(OH)₂D. Vitamin D plays a primary physiological role in maintaining extracellular calcium ion levels in the human body, primarily by controlling the absorption of calcium from the intestine, through direct effects on bone and also through its effects on PTH secretion.

Vitamin D has an important role in both innate and adaptive immune responses as receptors for vitamin D are present in various immune cells, including monocytes, macrophages and dendritic cells, as well as T and B lymphocytes. Vitamin D exerts an inhibitory action on the immune system. In the adaptive immune system, $1, 25(OH)_2$ D suppresses proliferation of B cells and immunoglobulin production and retards the differentiation of B cell precursors into plasma cells. It also inhibits T cell proliferation, in particular the Th1 cells capable of producing IFN- γ and IL-2. These actions prevent further antigen presentation and recruitment of T lymphocytes (role of IFN- γ), and T lymphocyte proliferation (role of IL-2). In contrast IL-4, IL-5, and IL-10 production can be increased, shifting the balance to a Th2 cell.

Methods

All subjects in the study were subjected to the following:

- 1. History taking laying stress on residence, occupation, sun exposure and previous intake of vitamin D or treatment.
- 2. Laboratory investigations:
- Assessment of Serum 25(OH) vitamin D level using enzyme immunoassay kit (Immunodiagnostic, Mainzer Landstrasse 49 60329 Frankfurt, Germany).

- Serum PTH level by Electrochemiluminescence approach using cobase 411 analyzer (Roche Diagnostics, Germany).
- Serum calcium level, creatinine, AST and ALT using Beckman Synchron CX9 ALX Chemistry analyzer (Diamond Diagnostics, USA).
- Peripheral blood mononuclear cell separation, stimulation by Phytohemagglutin (PHA) and culture in absence and presence of vitamin D in culture (*Jing et al.*, 2013, with minor modifications).
- IL-10 assessment in culture supernatant in absence and presence of vitamin D in culture using enzyme-linked immunosorbent assay (ELISA) kit (Wkea med supplies, 206 No.6 Building, Chenguang Gardon, Qianjian Street, Chaoyang District, Changchun 130012, China).

Results

The present study demonstrated a high prevalence of low vitamin D status among the study group (80% of our study candidates) ranged from 5 to 65 ng/ml with 21.32 mean±14.98 2SD. Moreover, it defined some risk factors for hypovitaminos D as working indoors and absence of outdoor activities (60% of our study candidates). It also showed a high significant differences in the supernatant IL-10 levels between cultures in absence and presence of vitamin D. Also, there was significant negative correlation between sufficient serum 25(OH) D levels group and IL-10 levels in culture supernatant pretreated with vitamin D. There was significant negative correlation between serum 25(OH) D and PTH levels. On contrast, it revealed no significant correlation between serum 25(OH) D levels and age, sex and serum calcium levels.

<u>Key words:</u> Vitamin D, IL10: interleukin 10, DC: denteritic cells, ELISA: Enzyme-linked immunosorbent assay, T-reg: T-regulatory lymphocytes, VDR: vitamin D receptor.

Introduction

Vitamin D refers to a group of fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, magnesium, phosphate and zinc. In humans, the most important compounds in this group are vitamin D₃ (also known as cholecalciferol or calcitriol) and vitamin D₂ (ergocalciferol) (*Norman*, 2008). Cholecalciferol and ergocalciferol can be ingested from the diet and from supplements. The body can also synthesize vitamin D (specifically cholecalciferol) in the skin, from cholesterol, when sun exposure is adequate (hence its nickname, the "sunshine vitamin") (*Nair and Maseeh*, 2012).

While it was long held that vitamin D acted only at the intestine, kidney, and skeleton, and that its function was limited to calcium homeostasis, the possibility of extra skeletal effects has been considered for decades as a result of the discovery of the vitamin D receptor (VDR) in tissues that have no involvement in calcium homeostasis (e.g., skin, placenta, pancreas, breast, prostate, colon cells, and activated T cells). Discovery of the VDR in these tissues led to exploration of the roles and mechanisms of vitamin D function in each (*Christakos et al., 2013*).

In recent years, research efforts were also focused on understanding the immunomodulatory properties of vitamin D3. 1,25-dihydroxyvitaminD3 [1,25(OH)₂D] has been shown to influence the growth and differentiation of both the innate and acquired immune cells, as well as their functions such as cytokine production (*Khoo et al., 2012*). As such, there has been much interest to identify its therapeutic potential in autoimmune and inflammatory diseases as well as cancers (*Pludowski et al., 2013*).

Furthermore, vitamin D may also influence circulating cytokine levels and cytokine production. Within the general population it has been reported that circulating proinflammatory cytokine concentrations, such as Tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and Interleukin 2 (IL-2), were significantly lower in vitamin D sufficient adults compared with those who were vitamin D insufficient. Also, the circulating interleukin-10 (IL-10) concentrations were significantly higher in the vitamin D sufficient athletes (*He et al.*, 2014). Moreover, calcitriol effectively up-regulates the synthesis of the anti-inflammatory cytokine IL-10 and induces IL-10 receptor expression in-vitro (*Schleithoff et al.*, 2006).

Aim of the work

The aim of this study is to assess the role of vitamin D3 in modulating the in-vitro production of IL-10 by peripheral blood mononuclear Cells (PBMCs) in normal population.

Vitamin D

I. Introduction

Vitamin D is a fat-soluble secosteroid that is naturally present in very few foods and also available as a dietary supplement (*Autier et al.*, 2014). In humans, the most important compounds in this group are vitamin D_2 (ergocalciferol) and vitamin D_3 (also known as cholecalciferol) (*Norman*, 2008) that differ chemically only in their side-chain structure (*Holick*, 2007). Ergocalciferol and Cholecalciferol can be ingested from the diet and from supplements (*Nair and Maseeh*, 2012).

II. Sources of Vitamin D

A. Food

Very few kinds of foods in nature contain vitamin D. The flesh of fatty fish (such as salmon, tuna, and mackerel) and fish liver oils are among the best sources. Small amounts of vitamin D are found in beef liver, cheese, and egg yolks. Vitamin D in these foods is primarily in the form of vitamin D_3 (cholecalceferol) (*Ovesen et al.*, 2003). Some mushrooms provide vitamin D_2 (ergocalciferol) (*Calvo et al.*, 2004).