

## Recent Updates in Sleep Disorders Related to Neurological Diseases

## Essay

Submitted for Fulfillment of Master Degree In Neuropsychiatry

Ву

Nermin Kamal El-Sayed Higgy

 $\mathcal{M}$ . $\mathcal{B}$ .,  $\mathcal{B}$ . $\mathcal{C}$ h.

Under Supervision of

## Prof. Amira Ahmed Zaki Dewedar

Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

## Prof. Mahmoud Hemeda Elrakawy

Professor of Neuropsychiatry
Faculty of Medicine - Ain Shams University

#### Dr. Salma Hamed Khalil

Assistant professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2014



Ain Shams University
Faculty of Medicine
Department of Neuropsychiatry

# المستجدات الحديثة في اضطرابات النوم المتعلقة باللأمراض العصبية

رسالة مقدمة توطئة للحصول على درجة الماجستير في الأمراض النفسية والعصبية

مقدمة من

الطبيبة/نرمين كمال السيد حجي بكالوريوس الطب و الجراحة

تحت إشراف

أد. أميرة أحمد زكي دويدار أستاذ الأمراض النفسية والعصبية

اسناد الامراض النفسية والعصبية كلية الطب - جامعة عين شمس

أ د. محمود حميدة الرقاوى

أستاذ الأمراض النفسية والعصبية كلية الطب - جامعة عين شمس

أم د. سلمي حامد خليل

أستاذ مساعد الأمراض النفسية والعصبية كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٤

# Acknowledgement

6

6

5

5

<u>6</u>

5

6

<u>6</u>

6

5

5

<u>6</u>

6

<u>9</u>

5

5

<u>5</u>

6

<u>6</u>

6

<u>5</u>

5

5

G

6

5

First of all, all gratitude is due to **God** Almighty, the Most Gracious and the Most Merciful, for enabling me to complete this work, as a part of His generous help, throughout my life.

I can hardly find the words to express my gratitude to **Prof.**Amira Ahmed Zaki Dwedar, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her supervision, encouragement throughout this work and her effort in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also indebted to **Prof. Mahmoud Hemeda Elrakawy**, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University for his guidance, continuous assistance and sincere supervision throughout this work.

I would also like to express my sincere appreciation and gratitude to **Dr. Salma Hamed Khalil**, Assistant Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her directions and support throughout this work.

Last but not least, I am grateful to my family, whom without their sincere emotional support and prayers, pushing me forward, this work would not have been completed.

Nermin Kamal El-Sayed Higgy

## **Contents**

| List of Abbreviations                        |     |  |  |  |  |
|----------------------------------------------|-----|--|--|--|--|
| List of Figures                              |     |  |  |  |  |
| List of Tables                               |     |  |  |  |  |
| Chapter (1): Introduction                    | 1   |  |  |  |  |
| Chapter (2): Normal Sleep                    | 6   |  |  |  |  |
| Chapter (3): Sleep Disorders and Epilepsy    | 37  |  |  |  |  |
| Chapter (4): Sleep Disorders and Headache    | 50  |  |  |  |  |
| Chapter (5): Sleep Disorders and Parkinson's | 65  |  |  |  |  |
| Chapter (6): Sleep Disorders and Cognition   | 98  |  |  |  |  |
| Chapter (7): Sleep Disorders and Stroke      | 104 |  |  |  |  |
| Chapter (8): Management                      | 120 |  |  |  |  |
| Chapter (9): Discussion                      | 151 |  |  |  |  |
| Chapter (10): Summary                        | 155 |  |  |  |  |
| Chapter (11): Conclusion                     | 161 |  |  |  |  |
| Chapter (12): Recommendation                 |     |  |  |  |  |
| Chapter (13): References                     |     |  |  |  |  |
| Appendices                                   |     |  |  |  |  |
| Chapter (14): Arabic Summary                 |     |  |  |  |  |

# List of Abbreviations

| Abb. | Meaning                               |
|------|---------------------------------------|
| 5HT  | 5-Hydroxy-tryptamine                  |
| ACTH | Adreno-cortico-trophic Hormone        |
| ADP  | Adenosine Di-phosphate                |
| AEDs | Antiepileptic Drugs                   |
| AHI  | Apnea-hypopnea Index                  |
| ARAS | Ascending Reticular Activating System |
| ASDA | American Sleep Disorders Association  |
| ATP  | Adenosine Tri-phosphate               |
| AVP  | Arginine Vasopressin                  |
| BDNF | Brain-Derived Neurotrophic Factor     |
| CB   | Cannabinoid Receptors                 |
| CCK  | Cholecystokinin                       |
| CH   | Cluster Headache                      |
| CMH  | Chronic Morning Headache              |
| CPAP | Continuous Positive Airway Pressure   |
| CPH  | Chronic Paroxysmal Hemicrania         |
| CRH  | Corticotrophin Releasing Hormone      |
| CSA  | Central Sleep Apnea                   |
| CSB  | Cheyne-Stokes Breathing               |
| CSF  | Cerebrospinal Fluid                   |
| DAT  | Dopamine Transporters                 |
| DLB  | Dementia with Lewy Bodies             |
| DS   | Daytime sleepiness scale              |
| DSIP | Delta Sleep Inducing Peptide          |
| EDS  | Excessive Daytime Sleepiness          |
| EEG  | Electro-encephalogram                 |
| EMG  | Electro-myogram                       |
| EOG  | Electro-oculogram                     |
| ESS  | Epworth Sleepiness Scale              |
| FLEP | Frontal Lobe Epilepsy Parasomnia      |

| Abb. | Meaning                                         |
|------|-------------------------------------------------|
| FSS  | Fatigue Severity Scale                          |
| GABA | Gama Amino-buteric Acid                         |
| GH   | Growth Hormone                                  |
| GHRH | Growth Hormone Releasing Hormone                |
| GND  | Ground electrode in polysymnography             |
| ICC  | Intraclass Correlation Coefficient              |
| ICHD | International Classification of Headache        |
|      | Disorders                                       |
| ICP  | Intracranial Pressure                           |
| ICSD | International Classification of Sleep Disorders |
| IGF  | Insulin-like Growth Factor                      |
| IL   | Interleukin                                     |
| INF  | Interferons                                     |
| ISCS | Inappropriate Sleep Composite Score             |
| LDT  | Latero-dorsal Tegmental                         |
| LH   | Luteinizing Hormone                             |
| MDS  | Movement Disorder Society                       |
| MOS  | Medical Outcome Study                           |
| MPN  | Median Pre-optic Nucleus                        |
| MSA  | Multiple System Atrophy                         |
| MSH  | Melanocyte Stimulating Hormone                  |
| MSLT | Multiple Sleep Latency Test                     |
| MWT  | Maintenance of Wakefulness Test                 |
| NFLE | Nocturnal Frontal Lobe Epilepsy                 |
| NGF  | Nerve Growth Factor                             |
| NMDA | N-methyl-D-aspartate                            |
| NREM | Non-rapid Eye Movement Sleep                    |
| NTS  | Night Time Scale                                |
| OSA  | Obstructive Sleep Apnea                         |
| PD   | Parkinson Disease                               |
| PDSS | Parkinson's Disease Sleep Scale                 |
| PGE2 | Prostaglandin E2                                |
| PLMS | Periodic Limb Movements in Sleep                |
| POA  | Pre-optic Area of Hypothalamus                  |

| Abb.  | Meaning                                    |
|-------|--------------------------------------------|
| PPT   | pedunculo-pontine tegmental nucleus        |
| PSG   | Polysomnography                            |
| PSQI  | Pittsburgh Sleep Quality Index             |
| RBD   | REM sleep Behavior Disorder                |
| REM   | Rapid Eye Movement Sleep                   |
| RLS   | Restless Legs Syndrome                     |
| SAS   | Sleep Apnea Syndrome                       |
| SCN   | Supra-chiasmatic Nucleus                   |
| SCOPA | Scales for outcomes in Parkinson's disease |
| SD    | Standard Deviation                         |
| SDB   | Sleep-disordered Breathing                 |
| SDQ   | Sleep Disorders Questionnaire              |
| SMI   | Sleep Maintenance Insomnia                 |
| SOI   | Sleep Onset Insomnia                       |
| SOS   | Sudden Onset of Sleep                      |
| SSS   | Stanford Sleepiness Scale                  |
| SUDEP | Sudden Unexpected Death in Epilepsy        |
| SWDs  | Stroke Sleep-Wake Disorders                |
| TCS   | Trans-cranial Sonography                   |
| TLE   | Temporal Lobe Epilepsy                     |
| TMN   | Tubero-mammillary nucleus                  |
| TSH   | Follicle Stimulating Hormone               |
| TSH   | Thyroid Stimulating Hormone                |
| VIP   | Vasoactive Intestinal Peptide              |
| VLPO  | Ventro-lateral Pre-optic Nucleus           |
| VMPO  | Ventro-medial Pre-optic Nucleus            |
| VNS   | Vagus Nerve Stimulation                    |

# List of Figures

| Figure No.  | Title                                                                                                                               | Page No. |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| *Figure(1)  | : EEG patterns of human sleep states and stages.                                                                                    | l 9      |
| *Figure(2)  | Diagrammatic representation of electrode placements for recording the electrophysiologic phenomena of sleep. GND, ground electrode. | <b>;</b> |
| *Figure(3)  | : A 30-second epoch of a representative sample of an overnight PSG recording.                                                       | 11       |
| *Figure(4)  | : Neuroanatomy of sleep-related structures. SCN, LDT, PPT                                                                           | 1 12     |
| *Figure(5)  | : Main pathways involved in NREM sleep.                                                                                             | 13       |
| *Figure(6)  | : Main pathways involved in REM sleep.                                                                                              | 13       |
| *Figure(7)  | : Main pathways involved in wakefulness.                                                                                            | 14       |
| *Figure(8)  | : Effects of melatonin secretion. CSF, LH, NREM and SCN.                                                                            | , 23     |
| *Figure(9)  | : Diurnal changes in melatonin, temperature, cortisol and growth hormone.                                                           |          |
| *Figure(10) | : Effects of melatonin secretion. CSF, LH, NREM and SCN.                                                                            | , 34     |
| *Figure(11) | : Etiology of sleep disruption in children with epilepsy.                                                                           | 49       |
| *Figure(12) | ·                                                                                                                                   |          |
| *Figure(13) | : Hypersomnia after bilateral paramedian thalamic stroke                                                                            |          |

# List of Figures (Cont.)

| Figure No.  | Title                                                                        | Page No. |
|-------------|------------------------------------------------------------------------------|----------|
| *Figure(14) | : cont'd (F), compared with the normal control (G).s                         | 110      |
| *Figure(15) | : Hypersomnia after paramedian thalamic stroke                               | 110      |
| *Figure(16) | : Insomnia after unilateral thalamic stroke (hemorrhage).                    | 111      |
| *Figure(17) | : Dream-like hallucinations after left<br>paramedian thalamic stroke (A, B). | 113      |
| *Figure(18) | : Insomnia and left-sided periodic limb                                      | )        |
|             | movements after right paramedian pontine stroke.                             | 115      |
| *Figure(19) | : Decreased slow-wave sleep after bilateral paramedian thalamic stroke       | l<br>117 |
| *Figure(20) | : REM sleep reduction after hemispheric                                      | <u>;</u> |
|             | stroke in five patients with first supratentorial stroke                     |          |
| *Figure(21) | : Example of a sleep log to assess sleep<br>behaviors over a period of time  | 123      |
| *Figure(22) | : Example of an actigraphy log.                                              | 124      |
| *Figure(23) | : Patient questionnaire for rating excessive                                 | <b>)</b> |
| 8 ( . /     | daytime sleepiness using the Epworth Sleepiness Scale.                       |          |
| *Figure(24) | : Suggested algorithm for management of sleep-related headache.              | f 140    |

# List of Tables

| Table No.   |   | Title                                                                                                                               | Page No. |
|-------------|---|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| *Table (1)  | : | Physiological variability between non rapid eye movement (NREM) and rapid eye movement (REM) sleep.                                 | 7        |
| *Table (2)  | : | Comparison of neurotransmitter amines                                                                                               | 19       |
| *Table (3)  | : | Effects of amino acid and other neurotransmitters on sleep                                                                          | 26       |
| *Table (4)  | : | Effects of peptide neurotransmitters on sleep                                                                                       | 28       |
| *Table (5)  | : | International Classification of Sleep<br>Disorders (ICSD), produced by the<br>American Sleep Disorders Association<br>(ASDA), 1997. | 35       |
| *Table (6)  | : | American Academy of Sleep Medicine Classification of sleep disorders 2005.                                                          | 36       |
| *Table (7)  | : | Sleep disturbances may be present with headaches.                                                                                   | 55       |
| *Table (8)  | : | Headaches relations with sleep and sleep disturbances                                                                               | 59       |
| *Table (9)  | : | Definition of the three categories                                                                                                  | 81       |
| *Table (10) | : | Prevelance of SDB after stroke                                                                                                      | 106      |
| *Table (11) | : | Common Indications for Polysymnography                                                                                              | 121      |
| *Table (12) | : | Questions to ask patients in the evaluation of insomnia                                                                             | 124      |
| *Table (13) | : | Summary of Cognitive Behaviour Therapy for Insomnia                                                                                 | 126      |
| *Table (14) | : | Medications for Insomnia                                                                                                            | 127      |

| *Table (15) | : | Medications for Restless Legs Syndrome                                                                | 131 |
|-------------|---|-------------------------------------------------------------------------------------------------------|-----|
| *Table (16) | : | Morning Headaches and Sleep disorders                                                                 | 141 |
| *Table (17) | : | Treatment of sleep diorders in Parkinoson's disease                                                   | 142 |
| *Table (18) | : | Effect of CPAP after stroke                                                                           | 147 |
| *Table (19) | : | Diagnostics and treatment of sleep-<br>related breathing and sleep-wake<br>disorders following stroke | 148 |

## Introduction

We spend nearly one-third of our life asleep (Siegel, 2009). Over just a few seconds or minutes, there will be dramatic alterations in easily observed physiological variables, including eye closure, breathing, arousability, and muscle tone. Changes in cortical activity and muscle tone are recorded by the electroencephalogram (EEG) and electromyogram (EMG), respectively, and the actual transitions in electrophysiologically monitored state, occur over just a few seconds (Takahashi et al., 2010).

Sleep medicine has experienced an exponential growth in the last 30 years. In the new international classification of sleep disorders, more than 80 clinical sleep disorders are codified (American Academy of Sleep Medicine, 2005).

A disordered sleep—wake cycle can have major effects on many common neurological complaints such as headache and epilepsy. Furthermore, sleep related disorders such as parasomnias, particularly with agitation, can be hazardous to patients and bed partners while also being diagnostic clues in some neurodegenerative diseases (**Reading**, **2010**).

General neurologists agonize over the differential diagnosis between a seizure disorder and any of the parasomnias and worry

mistaking an epileptic absence for cataplexy. Stroke physicians are concerned about sleep apnea as a risk factor for stroke. Movement disorders' specialists are increasingly battling the multiple sleep-related problems associated with Parkinson's disease and allied dysfunctions. Neuromuscular experts dread nocturnal respiratory muscle insufficiency, whereas epileptologists think of sleep as an unknown zone of pathological activity (Culebras et al., 2007)

There is increasing evidence that obstructive sleep apnea (OSA) coexists in epilepsy (in 10% of unselected adult epilepsy patients, 20% of children with epilepsy and up to 30% of drugresistant epilepsy patients). Continuous positive airway pressure treatment of OSA in epilepsy patients improves seizure control, cognitive performance and quality of life (Manni and Terzaghi, 2010).

Both sleep and sleep deprivation influence the frequency of epileptiform discharges on electroencephalograms as well as the occurrence of clinical seizures. Effective treatment of sleep disorders can improve seizure control (**Kotagal and Yardi, 2008**).

Excessive daytime sleepiness and respiratory failure during wakefulness and sleep are observed commonly in patients suffering from myotonic dystrophy (Culebras, 2005).

Some patients who have neuromuscular disorder exhibit nocturnal hypoventilation in excess of muscular weakness or of diaphragm failure, suggesting an alteration of central respiratory drive (Culebras, 2005).

Insomnia is the most common sleep complaint; it affects between 10% and 35% of the population in the western world (Sateia et al., 2000).

Almost 70% of Parkinson's disease (PD) patients report nocturnal disturbances, including insomnia, nightmares, and excessive daytime sleepiness. In idiopathic PD, both motor symptoms (nocturnal akinesia, early-morning dystonia, painful cramps, tremor, and turning in bed) and the depression that often accompanies the disease can give rise to insomnia (**Askenasy**, **2003**).

Around 40% of children with Tourette's syndrome (TS) also have a history of somnambulism, night terrors or enuresis and are prone to confusional arousal (**Iranzo**, **2001**).

Sleep disturbances, such as the sundowning syndrome and nocturnal agitation, are found in 25 to 35% of subjects with Alzheimer dementia (AD). Sleep abnormalities are closely parallel to the severity level of dementia (**Vecchierini**, **2010**).

The relationship between sleep and primary headaches has been known for over a century, particularly for headaches occurring during the night or early morning. Migraine, tension-type headache, and cluster headache may cause sleep fragmentation, insomnia, and hypersomnia, causing considerable social and economic costs and several familial problems. Furthermore, sleep disorders may themselves trigger headache attacks (Aguggia et al., 2011).

Obstructive sleep apnea (OSA) is gaining recognition as a cardiovascular and cerebrovascular risk factor (Bagai, 2010).

Strokes can themselves generate sleep disordered breathing (SDB). There is a bi-directional relation between SDB and cerebrovascular accidents (**Iyer and Iyer, 2010**).

Neurologists, nowadays, consider sleep a trigger, a risk, and a modulator of neurological disorders. In consequence, they are using more and more the sleep laboratory as a standard testing unit for their patients (Culebras et al., 2007).