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Summary:

In this thesis, the steam turbine SMIB is analyzed by using Heffron Phillip's model
without and with taking into consideration steam turbine and Governor response. The
stability of steam turbine SMIB with unstable or lightly damped rotor mode is improved
by using the H∞ feedback controller. The effect of H∞ feedback controller is compared
with the effect of CPSS, FLC, and OLR on power system stability under suddenly change
in rotor speed of the system. The best performance for the system adjusts by the H∞
controller, and the system becomes more stable with any external or internal disturbance.
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