STABILITY OF POWER SYSTEM USING ROBUST CONTROL

by

Eng. Ibrahim Youssef Ibrahim Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

STABILITY OF POWER SYSTEM USING ROBUST CONTROL

by

Eng. Ibrahim Youssef Ibrahim Saleh

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Mahmoud .M. Elmetwally

Dr. Hany Abdelfattah

Electrical Power & Machines Dept.

Faculty of Engineering

Cairo University

Electric Power Dept.

Faculty of Industrial Education

Suez University

STABILITY OF POWER SYSTEM USING ROBUST CONTROL

by

Eng. Ibrahim Youssef Ibrahim Saleh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Mahmoud Mohamed El Metwally

Thesis Main Advisor

Prof. Dr. Mahmoud Ali Mahmoud Farrag

Internal Examiner

Prof. Dr. Elmoataz Youssef Abdel El Aziz External Examiner

- Electrical Power & Machines Dep., Faculty of engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Ibrahim Youssef Ibrahim Saleh

Date of Birth: 1 / 11 / 1989 **Nationality:** Egyptian

E-mail: Eng.ibrahimyoussef89@yahoo.com

Phone: 01008407550

Address: 2 st. Abdalla Afefe, Ambaba

Registration Date: 1 / 10 / 2012 **Awarding Date:** / / 2017

Degree: Master of Science

Department: Electric Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Mohamed El Metwally

Dr. Hany Abdelfattah Abdelazem

(Faculty of Industrial Education, Suez University)

Examiners:

Prof. Dr. Elmoataz Youssef Abdel El Aziz

(Faculty of Engineering, Ain Shams University)

Prof. Dr. Mahmoud Ali Mahmoud Farrag Prof. Dr. Mahmoud Mohamed El Metwally (External Examiner)

(Internal Examiner) (Thesis Main Advisor)

Title of Thesis:

STABILITY OF POWER SYSTEM USING ROBUST CONTROL

Key Words:

Conventional Power System Stabilizer (CPSS), Fuzzy Logic Control (FLC), Robust control (H_{∞} controller), Optimum Linear Regulator (OLR), Single Machine Infinite Bus (SMIB).

Summary:

In this thesis, the steam turbine SMIB is analyzed by using Heffron Phillip's model without and with taking into consideration steam turbine and Governor response. The stability of steam turbine SMIB with unstable or lightly damped rotor mode is improved by using the $H\infty$ feedback controller. The effect of $H\infty$ feedback controller is compared with the effect of CPSS, FLC, and OLR on power system stability under suddenly change in rotor speed of the system. The best performance for the system adjusts by the $H\infty$ controller, and the system becomes more stable with any external or internal disturbance.

ACKNOWLEDGMENTS

Above all, I want to thank *ALLAH* for making it possible for me to earn this degree. I would like to use this opportunity to thank *Prof. Dr. Mahmoud Mohamed Elmetwally* for valuable supervision, continuous encouragement, useful suggestions, and active help. I wish to express my sincere thanks to *Dr. Hany Abdelfattah* whose assistance in guiding me throughout this research, continuous encouragement and patience has helped me throughout this thesis.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	i
TABLE OF CONTENTS	ii
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF SYMBOLS AND ABREVIATIONS	xi
ABSTRACT	xiv
1. INTRODUCTION	1
1.1 Power system stability	1
1.2 Heffron-Phillip's model	4
1.3 Organization of the thesis	5
2. POWER SYSTEM MODEL	6
2.1 Introduction	6
2.2 The Dynamic Model of Steam Turbine	6
2.3 Dynamic model of a single machine infinite bus	12
2.3.1 Demagnetizing effect of armature reaction	13
2.3.2 Effect of small changes of speed	15
2.3.3 Voltage regulator with one time log	16
2.3.4 Calculation of Heffron's Phillips constant	19
2.4 State space for SMIB	20
2.5 Dynamic model for steam turbine with SMIB	22
2.6 State space for SMIB with steam turbine using Heffron Phillip's model	24
3. Conventional Power System Stabilizer and Optimum Linear Regulator	27
3.1 Introduction	27

	3.2 Conv	entional Power System Stabilizer	27
	3.2.1	SMIB without the steam turbine	28
	3.2.2	SMIB with steam turbine	32
	3.3 Optin	num linear regulator	35
	3.3.1	SMIB model with OLR	35
	3.3.2	The simulation results for SMIB model with OLR	38
	3.3.3	Steam turbine SMIB model with OLR	42
	3.3.4	The simulation results for steam turbine SMIB model with	44
	OLR		
	3.4 CON	CLUSION	48
4. Fuz	zy Logic C	Controller	49
	4.1 Introd	duction	49
	4.2 Fuzzy	y Systems	50
	4.3 Desig	gn of Fuzzy Logic Based PSS	51
	4.4 Simu	ulation Result for SMIB with FLC	56
	4.5 Simu	lation Result for Steam Turbine SMIB with FLC	60
	4.6 CON	CLUSION	63
5. Rob	oust Contro	oller	64
00 210%	5.1 Introd		64
		Optimal Control	65
		SMIB system with H_{∞} controller	67
		Steam Turbine SMIB with H_{∞} controller	70
		lation Result For SMIB model with H_{∞} controller	73
	5.4 Simu	alation Result For Steam Turbine Power Plant model with controller	76
	5.5 CON	CLUSION	79

6. The Simulation Results	80
6.1. Introduction	80
6.2. The Comparison between all control techniques for SMIB	80
6.3 The Comparison between all control techniques for Steam Turbine SMIB	84
6.4 CONCLUSION	88
7. CONCLUSIONS AND DISCUSSION	89
7.1. Conclusions	89
7.1. Recommend for Future Work	90
REFERENCES	91
PUBLISHED WORK	96

LIST OF TABLES

		Page
Table 2.1	The parameters for SMIB	18
Table 2.2	the Heffron Phillip's constants	20
Table 4.1	The Membership functions for fuzzy variables	52
Table 4.2	Rules base of fuzzy logic control	54
Table 6.1	Comparison The results for Speed Deviation for SMIB	83
Table 6.2	Comparison The results for Rotor Angle Deviation for SMIB	83
Table 6.3	Comparison The results for $\Delta_{E^{\acute{q}}}$ SMIB	84
Table 6.4	Comparison The results for $\Delta_{E^{fd}}^{E}$ SMIB	84
Table 6.5	Comparison The results for Speed Deviation for steam turbine Power plant	87
Table 6.6	Comparison The results for Rotor Angle Deviation for steam Power plant	87
Table 6.7	Comparison The results for $\Delta_{E^{\frac{1}{4}}}$ for steam turbine power plant	88
Table 6.8	Comparison The results for $\Delta_{\stackrel{\cdot}{E^{fd}}}$ for steam turbine power plant	88

LIST OF FIGURES

		Page
Fig. 1.1	power-system stability classification	2
Fig. 2.1	The Steam Turbine Power Plant	6
Fig. 2.2	Tandem-compound turbine	8
Fig. 2.3	Cross-compound turbine	9
Fig. 2.4	Steam turbine model	10
Fig. 2.5	Block Diagram for steam turbine	11
Fig. 2.6	Single machine infinite bus	12
Fig. 2.7	The equivalent circuit of the SMIB	12
Fig. 2.8	Block diagram for SMIB with demagnetizing effect of rotor reaction	14
Fig. 2.9	Block diagram for SMIB using Heffron Phillip's model	17
Fig. 2.10	Heffron's Phillips model for SMIB with steam turbine	22
Fig. 2.11	Block diagram for Governor system	23
Fig. 2.12	Block diagram for steam turbine power plant with governor system	24
Fig. 3.1	Conventional power system stabilizer	28
Fig. 3.2	The simulation for SMIB without steam turbine	29
Fig. 3.3	Deviation of rotor speed for SMIB using CPSS	30

Fig. 3.4	Deviation of rotor angle for SMIB using CPSS	30
Fig. 3.5	Deviation of field voltage for SMIB using CPSS	31
Fig. 3.6	Deviation of quadrature voltage for SMIB using CPSS	31
Fig. 3.7	Simulation of SMIB with Steam turbine	32
Fig. 3.8	Deviation of rotor speed for Steam turbine power plant with CPSS	33
Fig. 3.9	Deviation of rotor angle for Steam turbine power plant with CPSS	33
Fig. 3.10	Deviation of field voltage for Steam turbine power plant with CPSS	34
Fig. 3.11	Deviation of quadrature voltage for Steam turbine power Plant with CPSS	34
Fig. 3.12	Heffron Phillip's model for SMIB with OLR	37
Fig. 3.13	Simulation of SMIB with OLR	39
Fig. 3.14	Deviation of Rotor Speed for SMIB with OLR	40
Fig. 3.15	Deviation of Rotor Angle for SMIB with OLR	40
Fig. 3.16	Deviation of quadrature voltage for SMIB with OLR	41
Fig. 3.17	Deviation of field voltage for SMIB with OLR	41
Fig. 3.18	Heffron Phillip's model for steam turbine SMIB with OLR	43
Fig. 3.19	Simulation of steam turbine power plant with OLR	45
Fig. 3.20	Deviation of rotor speed for steam turbine power plant with OLR	46

Fig. 3.21	Deviation of rotor angle for steam turbine power plant with OLR	47
Fig. 3.22	Deviation of quadrature voltage for steam turbine power Plant with OLR	47
Fig. 3.23	Deviation of Field Voltage for steam turbine power Plant with OLR	48
Fig. 4.1	Fuzzy Inference system	51
Fig. 4.2	Membership function for speed deviation	53
Fig. 4.3	Membership function for acceleration	53
Fig. 4.4	Membership function for Voltage	54
Fig. 4.5	the structure of control for fuzzy control	55
Fig. 4.6	SMIB Model with fuzzy logic control	55
Fig. 4.7	Steam Turbine SMIB Model with fuzzy logic control	56
Fig. 4.8	The simulation of SMIB model with fuzzy logic control	57
Fig. 4.9	Deviation of Rotor Speed for SMIB with fuzzy logic control	58
Fig. 4.10	Deviation of Rotor Angle for SMIB with fuzzy logic control	58
Fig. 4.11	Deviation of quadrature voltage for SMIB with fuzzy logic control	59
Fig. 4.12	Deviation of field voltage for SMIB with fuzzy Logic control	59
Fig. 4.13	The simulation of Steam Turbine SMIB with fuzzy Logic control	60

Fig. 4.14	Deviation of rotor speed for Steam Turbine SMIB with fuzzy logic control	61
Fig. 4.15	Deviation of rotor angle for Steam Turbine SMIB with fuzzy logic control	61
Fig. 4.16	Deviation of field voltage for Steam Turbine SMIB with fuzzy logic control	62
Fig. 4.17	Deviation of quadrature voltage for Steam Turbine SMIB with fuzzy logic control	62
Fig. 5.1	The block diagram for any system with H_{∞} controller	65
Fig. 5.2	The SMIB model with H_{∞} controller	69
Fig. 5.3	The Steam Turbine Power Plant model with H_{∞} controller	72
Fig. 5.4	The simulation of SMIB with H_{∞} controller	73
Fig. 5.5	Deviation of rotor speed for SMIB with H_{∞} controller	74
Fig. 5.6	Deviation of rotor angle for SMIB with H_{∞} controller	74
Fig. 5.7	Deviation of field voltage for SMIB with H_{∞} controller	75
Fig. 5.8	Deviation of quadrature voltage for SMIB with H_{∞} controller	75
Fig. 5.9	The simulation of Steam turbine power plant with H_{∞}	76
Fig. 5.10	Deviation of Rotor Speed for steam turbine power plant with H_{∞}	77
Fig. 5.11	Deviation of Rotor Angle for steam turbine power plant with H_{∞}	77
Fig. 5.12	Deviation of quadrature voltage for steam turbine power plant with H_{∞}	78

Fig. 5.13	Deviation of field voltage for steam turbine power plant with H_{∞}	78
Fig. 6.1	Comparison The results for Speed Deviation for SMIB	81
Fig. 6.2	Comparison The results for rotor angle Deviation for SMIB	81
Fig. 6.3	Comparison The results for Deviation of quadrature voltage for SMIB	82
Fig. 6.4	Comparison The results for Deviation of field voltage for SMIB	82
Fig. 6.5	Comparison The results for Speed Deviation for steam turbine Power plant	85
Fig. 6.6	Comparison The results for Rotor Angle Deviation for steam Power plant	85
Fig. 6.7	Comparison The results for deviation of quadrature voltage for steam turbine Power plant	86
Fig. 6.8	Comparison The results for deviation of field voltage for steam turbine Power plant	86

LIST OF SYMBOLS AND ABREVIATIONS

d	The disturbance
D	Damping
ΔE_{fd}	Deviation of field voltage
$\Delta E_{q}{'}$	Deviation of internal quadrature voltage
F_{HP}	Fraction of high pressure stage
F_{IP}	Fraction of intermediate pressure stage
F_{LP}	Fraction of low pressure stage
H	Per unit inertia constant
I_{do}	Direct axis current
I_{qo}	Quadrature axis current
$K_1 : K_6$	Heffron – Phillips constants
K_A	Amplifier gain
K_{stab}	The stabilizer gain
K_{U1}	Multiplied gain for error of fuzzy logic control
K_{U2}	Multiplied gain for error change of fuzzy logic control
K_{U3}	Multiplied gain for output of fuzzy logic control
M	Moment of inertia
P	Pressure of steam in turbine
P_0	Rated pressure
P_e	Electrical power
P_m	Mechanical power
$P_{\scriptscriptstyle S}$	Synchronization power
Q	Steam mass flow rate
Q_L	Reactive power for load
Q_0	Rated flow out of turbine
Q_{out}	Output steam mass flow rate
R	Transient droop or regulation