

Biodegradation of some polycyclic aromatic hydrocarbons polluted soils contaminated with petroleum oil

Thesis
Submitted for the partial fulfillment for the requirements of the degree of Master of Science in Microbiology

By

Basant Nader Ahmed Rashad B.Sc. Microbiology, Ain Shams University, 2011

Supervisors

Prof.
Nagwa Ahmed Abdallah
Professor of Microbiology
Faculty of Science

Ain Shams University

Prof.

Mervat Aly Mohamed Abo-State
Professor of Microbiology
National Center for Radiation
Research and Technology
Atomic Energy Authority

Microbiology Department

Faculty of Science Ain Shams University 2017

Acknowledgement

Thanks to God for the completion of this work.

Only due to his blessing I could finish my thesis.

I would like to express my appreciation and sincere gratitude to Professor Nagwa Abd Allah for her kind supervision and advice.

My sincere thanks and deep gratitude to professor Mervat Abo State for her support, valuable guidance and motivation to complete this work. Without her help it would be impossible to finish this work.

I owe my deepest gratitude to my family for their help and encouragement.

I would like to say that scientific degrees are not the most important things in life, but beloved family, good friends, good times and happiness are.

With warm regards

Basant Nader Ahmed Rashad

Dedication

I would like to dedicate this work to my parents that seeded my curiosity and desire for knowledgement and thanking them for their unlimited effort, patience and invocation that is unquestionable honored.

Contents

Abstr	act	• • • • • • •
Aim o	f the work	• • • • •
1. Intr	oduction	1
	iew of literature	
2.1.	Spreading of PAHs in nature and	their
	Chemical structure of polycyclic aromatic	т
	ocarbons (PAHs)	6
	Contamination of soil with petroleum oil	
	High molecular weight PAHs degrading	
	oorganism in treating soils	12
	High molecular weight PAHs degrading bacteria	
	High molecular weight PAHs pathways	
	Benz[a]anthracene degradation pathway Pyrene degradation pathway	
	Benzo[a]Pyrene degradation pathway	
	terials and Methods	
3.1.		
3.1.1.		
3.1.2.	r 8	
3.1.2.	Media	
3.1.3.1.	Basal salt medium (BSM)	
3.1.3.1.	Luria Bertani (LB) broth medium	
3.1.3.3.	Luria Bertani (LB) agar medium.	
3.1.4.	Chemicals	
3.1.5.	Protein determination.	
3.1.6.		
3.1.7.		
	Methods	
3.2.1.	Adaptation of samples.	

3.2.2.	Enrichment technique for selection of polycyclic
	aromatic hydrocarbon degrading bacteria
	(PAHsDB)67
3.2.3.	Isolation of the most tolerant HMW-PAHs bacterial
	isolates68
3.2.4.	Screening for the most potent bacterial strains
	capable of degrading HMW-PAHs69
3.2.5.	Determination of the ability of the most promising
	HMW-PAHs degrading bacteria (PAHDB) to
	degrade PAHs69
3.2.6.	Determination of the ability of most promising
	degrading bacteria (PAHsDB) to degrade mixtures of
	HMW-PAHs70
3.2.7.	Identification of the most potent bacterial strain by
	16S-rRNA71
3.2.7.1	. Phenotypic characterization of degrading bacterial strain71
3.2.7.2	
3.2.7.3	
3.2.7.4	
3.2.7.5 3.2.7.6	, c
	esults74
4.1	Isolation and screening for the most tolerant bacterial
4.0	isolates on HMW-PAHs74
4.2.	Growth and degradation of benz[a]anthracene by the
4.2	most potent bacterial isolates
4.3.	Growth and degradation of Pyrene by the most
	potent bacterial isolates
4.4. (Growth of isolated strains on mixtures of Pyrene and
	benzo[a]Pyrene at different concentrations122
4.5. C	Growth of eight bacterial isolates on triple mixtures of
	Pyrene, benz[a]anthracene and benzo[a]Pyrene
	(HMW-PAHs) have been investigated142
4.6. P	athway of MAM-P8 for degradation of HMW-PAH.165

4.7.	Identification	of th	e most	potent	PAHs	degrading
	bacterial st	rains				175
5. D	oiscussion	•••••	• • • • • • •		• • • • • • •	178
6. Summary and Conclusion					189	
7. References					192	
Ara	bic Summar	' V				

List of abbreviations

Abbrev.	Full term
Anth	Anthracene.
ANOVA	Analysis of variance.
ARHD	Aromatic Ring-hydroxylatingdioxygenase.
ARISA	Automated rRNA intergenic spacer analysis.
B[a]A	Benz[a]anthracene.
B[a]P	Benzo[a]pyrene.
bp	Base pair
Blastn	Somewhat similar sequences.
BSA	Bovine serum albumin.
BSM	Basal salt medium.
CFU	Colony Forming Unit.
Conc	Concentration.
CTAB	Cetyltrimethylammonium bromide.
DOM	Dissolved organic matter.
EPA	Environmental protection agency.
FAME	Fatty acid methyl ester.
GC/MS	Gas Chromatography/Mass Spectrometry.
GN	Gram negative bacteria.
GP	Gram positive bacteria.
HPLC	High Performance Liquid Chromatography.

HMW-PAHs	High molecular weight polycyclic aromatic hydrocarbons.				
LB	Luria Bertani.				
LC50	Lethal concentration at which 50%				
Leso	reduction in growth.				
LMW-PAHs	Low molecular weight polycyclic aromatic				
	hydrocarbons.				
M	Mucoid.				
MM	Minimal medium.				
MSM	Minimal salt medium.				
NCBI	National Center for Biotechnology				
	Information.				
NCRRT	National Center for Radiation Research and				
	technology.				
NDO	Naphthalene dioxygenase.				
NM	Non mucoid.				
NMR	Nuclear magnetic resonance.				
OSPW	Oil sands process-affected water.				
OUT	Operational taxonomic units.				
PAHs	Polycyclic aromatic hydrocarbons.				
PAHsDB	Polycyclic aromatic hydrocarbons				
	degrading bacteria.				
PAH-RHD	Polycyclic aromatic hydrocarbon ring-				
DATI	hydroxylatingdioxygenase.				
PAH-	Polycyclic aromatic hydrocarbon ring-				
RHD[GN]	hydroxylatingdioxygenase of gram				
DL -	negative bacteria. Phenanthrene.				
Phe	Phenanthrene.				
Dxym	Dyrana				
Pyr QRT-PCR	Pyrene. Quantitative real time – Polymerase Chain				
VK1-rck	Reaction				
RDA	Redundancy analysis.				
NUA	Redundancy analysis.				

RHD	Ring-hydroxylatingdioxygenase.
RHO	Ring-hydroxylating oxygenase.
RT	Retention time.
TCA	Tricarboxylic acid.
TPHs	Total petroleum hydrocarbons.
T-RFLP	Terminal restriction fragment length polymorphism.
μgL ⁻¹	Microgram per liter.

List of figures

Serial	Title	Page
Figure (1)	Proposed pathway for microbial catabolism of polycyclic aromatic hydrocarbons.	45
Figure (2)	Pathways proposed for the biotransformation of Benz[a]anthracene by <i>Sphingobium</i> KK22.	48
Figure (3)	Schemic pathway proposed for the degradation of Pyrene by <i>Mycobacteruim</i> sp. Strain AP1.	50
Figure (4)	Proposed pathways for the degradation of Pyrene by <i>M. Vanbaalanii</i> PYR-1.	51
Figure (5)	Proposed Pyrene degradation pathway of <i>Mycobacterium</i> KMS.	52
Figure (6)	Proposed degradation pathways of Pyrene by <i>Mycobacteruim</i> A1-PYR.	53
Figure (7)	Elucidation of Pyrene degradation pathway in <i>pseudomonas</i> sp. BP10.	54
Figure (8)	Pathways of pyrene degradation by exogenous microorganisms and alfalfa.	56
Figure (9)	A feasible pathway of dihydroxylation reaction catalyzed by R-NDO in the strain ustb-1.	57
Figure (10)	Proposed pathway for the degradation of benzo[a]pyrene by <i>M. vanbaalenii</i> PYR-1.	59
Figure (11)	Proposed scheme for the O-methylation mediated pathway involve in successive transformation of benzo[a]pyrene by laccase and <i>Mycobacteria</i> .	61
Figure (12)	Map showing the sampling sites.	62
Figure (13)	Growth of bacterial isolate MAM-P1 on different concentrations of benz[a]anthracene.	88

Figure	Extracellular protein of bacterial isolate MAM-P1 on different	88
(14)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P8 on different concentrations	89
(15)	of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P8 on different	
(16)	concentrations of benz[a]anthracene.	89
Figure	Growth of bacterial isolate MAM-P13 on different	90
(17)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P13 on different	90
(18)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P14 on different	91
(19)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P14 on different	91
(20)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P22 on different	92
(21)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P22 on different	92
(22)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P25 on different	93
(23)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P25 on different	93
(24)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P26 on different	94
(25)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P26 on different	94
(26)	concentrations of benz[a]anthracene.	
Figure	Growth of bacterial isolate MAM-P39 on different	95
(27)	concentrations of benz[a]anthracene.	
Figure	Extracellular protein of bacterial isolate MAM-P39 on different	95
(28)	concentrations of benz[a]anthracene.	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	99
(29)	strains on benz[a]anthracene after 21 days by HPLC.	
Figure	Growth of bacterial isolate MAM-P1 on different	111
(30)	concentrations of pyrene.	
Figure	Extracellular protein of bacterial isolate MAM-P1 on different	111
(31)	concentrations of pyrene.	
Figure	Growth of bacterial isolate MAM-P8 on different	112
(32)	concentrations of pyrene.	
	<u>.</u>	

Figure	Extracellular protein of bacterial isolate MAM-P8 on different	112
(33)	concentrations of pyrene.	
Figure	Growth of bacterial isolate MAM-P13 on different	113
(34)	concentrations of pyrene.	
Figure	Extracellular protein of bacterial isolate MAM-P13 on different	113
(35)	concentrations of Pyrene.	
Figure	Growth of bacterial isolate MAM-P14 on different	114
(36)	concentrations of pyrene.	
Figure	Extracellular protein of bacterial isolate MAM-P14 on different	114
(37)	concentrations of Pyrene.	
Figure	Growth of bacterial isolate MAM-P22 on different	115
(38)	concentrations of pyrene.	
Figure	Extracellular protein of bacterial isolate MAM-P22 on different	115
(39)	concentrations of pyrene.	
ъ.	C 4 C 1 (1 1 1 1 1 MANA POS 1100 4 1	116
Figure	Growth of bacterial isolate MAM-P25 on different	116
(40)	concentrations of pyrene. Extracellular protein of bacterial isolate MAM-P25 on different	116
Figure	concentrations of pyrene.	110
(41)	Growth of bacterial isolate MAM-P26 on different	117
Figure (42)	concentrations of pyrene.	11/
Figure	Extracellular protein of bacterial isolate MAM-P26 on different	117
(43)	concentrations of pyrene.	117
Figure	Growth of bacterial isolate MAM-P39 on different	118
(44)	concentrations of pyrene.	110
Figure	Extracellular protein of bacterial isolate MAM-P39 on different	118
(45)	concentrations of Pyrene.	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	122
(46)	strains on pyrene after 21 days by HPLC.	
Figure	Growth of bacterial isolate MAM-P1 on different	133
(47)	concentrations of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P1 on different	133
(48)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P8 on different concentrations	134
(49)	of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P8 on different	134
(50)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P13 on different	135
(51)	concentrations of mixture (Pyr and B[a]P).	

T10	D . 11 1	125
Figure	Extracellular protein of bacterial isolate MAM-P13 on different	135
(52)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P14 on different	136
(53)	concentrations of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P14 on different	136
(54)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P22 on different concentrations of	137
(55)	mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P22 on different	137
(56)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P25 on different	138
(57)	concentrations of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P25 on different	138
(58)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P26 on different	139
(59)	concentrations of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P26 on different	139
(60)	concentrations of mixture (Pyr and B[a]P).	
Figure	Growth of bacterial isolate MAM-P39 on different	140
(61)	concentrations of mixture (Pyr and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P39 on different	140
(62)	concentrations of mixture (Pyr and B[a]P).	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	142
(63)	strains on mixture (II) after 21 days by HPLC.	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	142
(64)	strains on mixture (IV) after 21 days by HPLC.	
Figure	Growth of bacterial isolate MAM-P1 on different	154
(65)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P1 on different	154
(66)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P8 on different	155
(67)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P8 on different	155
(68)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P13 on different	156
(69)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P13 on different	156
(70)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P14 on different	157
		·

(71)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P14 on different	157
(72)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P22 on different	158
(73)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P22 on different	158
(74)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P25 on different	159
(75)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P25 on different	159
(76)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P26 on different	160
(77)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P26 on different	160
(78)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Growth of bacterial isolate MAM-P39 on different	161
(79)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Extracellular protein of bacterial isolate MAM-P39 on different	161
(80)	concentrations of mixture (Pyr, B[a]A and B[a]P).	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	165
(81)	strains on mixture (II) after 21 days by HPLC.	
Figure	Degradation percentage of most potent HMW-PAHs bacterial	165
(82)	strains on mixture (IV) after 21 days by HPLC.	
Figure	Proposed pathway of benz[a]anthracene degradation by MAM-	169
(83)	P8.	
Figure	Proposed pathway of pyrene degradation by MAM-P8.	172
(84)		
Figure	Agarose gel of DNA of isolated strains MAM-P8 high	177
(85)	molecular weight polycyclic aromatic hydrocarbon degrading	
	bacteria.	
Figure	DNA sequencing of isolate MAM-P8.	177
(86)		
Figure	Phylogenetic tree constructed to isolated strain MAM-P8.	178
(87)		

List of tables

Serial	Title	Page
Table	Screening for the most potent bacterial strains capable of	76
(1)	degrading HMW-PAHs isolated from soils of El Zytea-port, Suez	
	Canal, Egypt.	
Table	Screening for the most potent bacterial strains capable of degrading	77
(2)	HMW-PAHs isolated from soils of Cairo Oil Refinery Company,	
	Mostrod, Qalyubia, Egypt.	0.0
Table	Growth and extracellular protein of most potent bacterial isolates	80
(3)	on different concentrations of B[a]A.	
Table	Count of the most tolerant HMW-PAHs bacterial strains on	97
(4)	different concentrations of benz[a]anthracene after 21 days.	
Table	Degradation percentage of most potent HMW-PAHs bacterial	98
(5)	strains on benz[a]anthracene after 21 days by HPLC.	
Table	Growth and Extracellular protein of most potent bacterial isolates	103
(6)	on different concentrations of Pyr.	
Table	Count of the most tolerant HMW-PAHs bacterial strains on	120
(7)	different concentrations of pyrene after 21 days	
Table	Degradation percentage of most potent HMW-PAHs bacterial	121
(8)	strains on pyrene after 21 days by HPLC.	
Table	Growth and Extracellular protein of most potent bacterial isolates	125
(9)	on different concentrations of mixture (Pyr and B[a]P).	
Table	Degradation percentage of most potent HMW-PAHs bacterial	141
(10)	strains on Pyrene and benzo[a]pyreneafter 21 days by HPLC.	
Table	Growth and Extracellular protein of most potent bacterial isolates	146
(11)	on different concentrations of mixture (Pyr, B[a]A and B[a]P).	
Table	Count of the most potent HMW-PAHs bacterial strains on	163
(12)	different concentrations of HMW-PAHs mixtures after 21 days.	
Table	Degradation percentage of most potent HMW-PAHs bacterial	164
(13)	strains on mixtures (Pyr, B[a]A and B[a]P) after 21 days by	
	HPLC.	
Table	Intermediates determined by GC-MS analysis of	166
(14)	benz[a]anthracene degradation by MAM-P8 after 21 days of	
, í	incubation.	
Table	Intermediates determined by GC-MS analysis of pyrene	170
(15)	degradation by MAM-P8 after 21 days of incubation.	
Table	Intermediates determined by GC-MS analysis of double (Pyr and	173
(16)	B[a]A) and triple (Pyr, B[a]A and B[a]P) mixtures degradation by	

Abstract

Basant Nader Ahmed Rashad, Biodegradation of some polycyclic aromatic hydrocarbons polluted soils contaminated with petroleum oil, (M.Sc.), Faculty of Science, Ain Shams University.

Biodegradation of polycyclic aromatic hydrocarbons especially high molecular weight (HMW) which represents the first priority must be disposed as recorded by US Environmental protection agency. Eight bacterial strains designed as MAM-P1, MAM-P8, MAM-P13 and MAM-P14 (group A) were isolated from contaminated with crude petroleum oil from El Zyteaport, Suez Canal, Egypt. While bacterial strains MAM-P22, MAM-P25, MAM-P26 and MAM-P39 (group B) were isolated from soil contaminated with crude petroleum oil from Cairo Oil Refinery Company, Mostrod, Qalyubia, Egypt. These isolates were evaluated for their potential to grow on different concentrations of HMW-PAHs (Benz[a]anthracene, Benzo[a]Pyrene and Pyrene). All isolated bacterial strains were able to grow on different concentrations of HMW-PAHs mixtures included [(benzo[a]Pyrene+Pyrene) which and benz[a]anthracene+benzo[a]Pyrene+Pyrene)]. Strain