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Abstract

Basant Nader Ahmed Rashad, Biodegradation of some
polycyclic aromatic hydrocarbons polluted soils
contaminated with petroleum oil, (M.Sc.), Faculty of
Science, Ain Shams University.

Biodegradation of polycyclic aromatic hydrocarbons
especially high molecular weight (HMW) which
represents the first priority must be disposed as recorded
by US Environmental protection agency. Eight bacterial
strains designed as MAM-P1, MAM-P8, MAM-P13 and
MAM-P14 (group A) were isolated from soil
contaminated with crude petroleum oil from El Zytea-
port, Suez Canal, Egypt. While bacterial strains MAM-
P22, MAM-P25, MAM-P26 and MAM-P39 (group B)
were isolated from soil contaminated with crude
petroleum oil from Cairo Oil Refinery Company,
Mostrod, Qalyubia, Egypt. These isolates were evaluated
for their potential to grow on different concentrations of
HMW-PAHs (Benz[a]anthracene, Benzo[a]Pyrene and
Pyrene). All isolated bacterial strains were able to grow
on different concentrations of HMW-PAHs mixtures
which  included  [(benzo[a]Pyrene+Pyrene) and
benz[a]anthracene+benzo[a]Pyrene+Pyrene)]. Strain



