NOISE MAPPING, ANALYSIS AND MITIGATION OF HURGHADA AIRPORT

BY

Eman Khallaaf Fathallah Khallaaf

B.SC. science (Biochemistry), Ain Shams University1992

A Thesis Submitted in Partial Fulfillment of

The Requirement for the master Degree in Environmental Science

Department of Environmental Basic Science
Institute of Environmental Studies and Research
Ain Shams University

Approval sheet

NOISE MAPPING, ANALYSIS AND MITIGATION OF HURGHADA AIRPORT

By

Eman Khallaaf Fathallah

B.sc.Science (Biochemistry), Ain Shams university 1992

This Thesis Towards a Master Degree in Environmental Science Has Been Approved by:

Name Signature

Prof. Dr. Hosni Ahmed Ismail Prof. of physics, Ain Shams University

Prof. Dr. Edwar George Hanna

Native Specialized Institutes consultant and General Manager of Environmental Department of Civil Aviation

Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics, Institute of Environmental Studies and Research, Ain Shams University

NOISE MAPPING, ANALYSIS AND MITIGATION OF HURGHADA AIRPORT

By

Eman Khallaaf Fathallah B.sc.Science (Biochemistry), Ain Shams university 1992

A Thesis Submitted in Partial Fulfillment of The Requirement for the Master Degree in Environmental Science

Under The Supervision of:

1- Prof. Dr. Mohamed G. El-Malky

Prof. of Environmental Geophysics, Institute of Environmental Studies and Research,

Ain Shams University

2- Dr. Mansour M. El-Bardisi

Lecturer, Faculty of Engineering, Ain Shams University

Acknowledgment

I Wish to express my sincere thanks and gratitude to Dr. Mohamed EL Malky; professor of environmental geophysics in the institute of environmental studies and research in Ain Shams University (ASU) for his help and support. Also, I wish to express my great appreciation and thankfulness to Dr. Mansour ElBardisi; Lecturer in faculty of Engineering in Ain Shams |University (ASU)

Who gave me a lot of his time and effort, I am going to be always indebt for both of them, because without their encouragement and support I wouldn't have completed this study.

I cannot express enough of my appreciation to my mother who took care of my sons during my long study and always encouraged me to study hard. I owe her too much. ...At last but not least, I want to say thanks to my husband who encourages me to apply for this study opportunity and kept giving me support and love to help me finish my study successfully. My thanks also go to those whose names are not mentioned here but encouraged me and helped me during my research in one way or another. Thank you all.

ABSTRACT

During the course of 20th century, air-transport has become one of the world's most influential industries. Aviation facilities the expansion of world trade and provides opportunities for travel and tourism.

Aviation is one of the worldwide environmental problems. Airports face several environmental constraints including noise. Aircraft noise is the most significant environmental problem arising from arriving and departing of aircrafts. Therefore, airport related noise is an important issue that affect the passengers, the surrounding communities and nearby residential areas.

Hurghada airport is one of the key drivers of the economic growth of Egyptian airports. Over seven million passengers travelled through Hurghada airport every year. The expected increase in 2030 is twelve million. It is generally accepted that significant improvements to the environmental impacts of aircraft noise will be needed if the long-term growth of air transport is to be sustained.

The main goal of the study is the reduction of noise levels and its mitigations at Hurghada airport and surroundings area; to manage negative impacts of noise to make the right balance with positive economic and social benefits of the airports.

Reduction of noise levels around airports and nearby communities can be achieved through; Implementation of noise mitigation schemes, engaging communities to understand their concerns and Land-use planning and management to reduce the noise sensitive areas or to change activities to be compatible with airport. On the other hand, to preserve the quietest areas towards sustainable development.

Definition
A standard and frequency weighting or filter used to reflect
the frequency response of the average human ear
A line of constant value of an aircraft noise index around an
airport
Unit of level- measurement on a logarithmic scale of ratio
A discrete noise occurrence caused by the passage of an
airplane
Exposure measured on a decibel scale
The trajectory of an aircraft in flight in 3-dimensional space
Contour of constant event level for one approach and/or
departure operation of a single aircraft
Hertz, a standard measure of frequency, cycles per second
International civil aviation organization
International organization of standardization
the highest level of environmental noise occurring during the
measurement time
Lowest level of environmental noise occurring during the
measurement time
Average sound pressure level over 1 night. this night can be
chosen so that it is representative of longer period 12-16
hours

Symbol	Definition
L night	Average sound pressure level over 1 night. this night can be
	chosen so that it is representative of longer period 8 hours
DNL	Composed of the long-term A-weighted average sound level
	for day/evening/night respectively plus 0/5/10 dB
L den	Average sound pressure level over all days, evening and
	nights in a year. In the evening value gets a penalty of dB and
	the night value of 10dB
L A eq, T	A-weighted-equivalent continuous noise level Calculates a
	constant level of noise with the same energy content as the
	varying acoustic noise signal being measured during time T
SEL	Sound exposure level contains the same amount of acoustic
	energy over a normalized one second as the actual noise
	event under consideration
WHO	World health organization
ATC	Aircraft traffic control
FAA	Federal Aviation Administration
ACI	Airports council International
CDA	Continuous descent approach
NADP	Noise abatement departure procedure
CAEP	Committee on aviation environmental protection

CONTENTS

Abstract

Acknowledgement

Aim of Work

CHAPTER ONE

INTRODUCTION

1 Introduction

1.1 Noise pollution as a worldwide problem	1
1.2 Sources of noise	2
1.3 Environmental noise	2
1.3.1 Common types of environmental noise	3
1.3.2 Threshold of audibility	4
1.4 Air traffic noise	5
1.5 Aviation and its impact on the Environment	6
1.5.1 Adverse Effects of Noise on Human Health	8
1.5.2 Auditory Effects of noise on Humans	9
1.5.3 Non-Auditory effects of noise on humans	10

1.5.4 Psychological effects of noise on humans	10
1.6 Airport Environment	12
1.7 Airport Noise	13
1.8 Environmental noise propagation	14
1.8.1 Propagation of Sound	14
1.8.2 Temperature	15
1.8.3 Wind	16
1.8.4 Factors influence aircraft noise	16
1.8.5 Air Traffic Noise Management	17
1.9 Area of Study	18
1.10 The Objective of the Study	20
1.11 Basic Concepts	20
1.11.1 NOISE	20
1.11.2 Noise Scales	21
1.11.3 Frequency Weighting	22
1.11.4 Noise Metrics	22
1.12 Measuring Single Event Noise	24

CHAPTER TWO

LITERATURE REVIEW

26

26

2. Literature Review

2.1 Literature Review of Previous Studies

2.2 noise models	33
2.2.1 The simulation approach	34
2.2.2 The integrated approach	35
2.3 Calculating noise levels	35
2.4 Legislations Framework	40
2.4.1 International Agreements	40
2.4.2 Efforts by the ICAO Environmental Protection	41
2.4.3 Laws and Legislations issued by the states	42
2.4.4 FAA guidelines and regulations	44
CHAPTER THREE MATERIAL AND METHOD	
3. Material and Method	46
3.1 Aim of Study	46

3.2 Methodology of Study	46
3.3 Equipment & Instrumentation	47
3.3.1 Sound level meter	47
3.3.2 Sound Level Meter Calibrator Type 42313	48
3.3.3 Environmental Noise Measurements Reference	49
3.3.4 Selection of Environmental Noise	49
Measurements Locations	49
3.3.5 Measurement Technique and precautions	50
3.4 Measurement Locations	52
3.5 Aircraft Identification	54
3.6 INM Basic Principle	55
3.7 Noise Metric of INM	57
3.8 INM Overview & Description	58
3.8.1 (INM) Data input	58
3.8.2 (INM) Output	59
3.8.3 Grid Points	59
3.8.4 Noise Contours	60
3.8.5 Noise Modeling	61

CHAPTER FOUR

RESULTS AND DISCUSSION

4. Results and Discussion	63
4.1 Results of Measurements Outside Hurghada Airport	63
4.2 Measurement Locations Inside Hurghada Airport	66
4.3 Identification of Aircraft Types	66
4.4 Analysis of Noise Measurements Outside	67
Hurghada Airport	
4.5 Analysis of Noise Measurements Inside	70
Hurghada Airport	
4.5.1 Some Aircraft Profile for Some Locations	72
4.6 Determination of the Highest Noise Level in All Locatio	ns 75
4.7 Measurements Results	77
4.7.1 Discussion of Measurements Results	77
4.7.2 Compliance of Measured Results with Environmental	80
Law 9/2009	
4.8 Methodology of Prediction	85
4.8.1 Airport Information	85

4.8.2 Flight Tracks	86
4.8.3 Flight Operation	86
4.8.4 The Assumption of INM model	88
4.8.5 Air-Traffic data	88
4.8.6 Model prediction	89
4.8.7 Identification of Noise Impacted Area	95
4.8.8 Discussing the produced Noise prediction maps	96
4.8.9 Discussing the possible scenarios of new-Runway	98
4.9 Model prediction	99
4.9.1 Aircraft noise model validation	104
4.9.2 Checking Forecast	105
4.9.3 Discussing the comparison between measured results and INM Predicted results.	109

CHAPTER FIVE

NOISE REDUCTION AND MANAGEMENT

5. Noise Reduction and Management	110
5.1 Balanced approach	110

5.1.1 Reduction at the source	112
5.1.2 Mitigation and Land-use planning	113
5.2 Land-use planning and Management of Hurghada airport	115
5.3 Establishment of noise zones for Hurghada airport	120
5.4 Noise Abatement Operational Procedures	122
5.4.1 Noise abatement Flight procedure	124
5.4.2 Managing Noise from Arriving Aircraft	124
5.4.3 Steeper Approaches	126
5.4.4 Low Power Low Drag	127
5.4.5 Managed approach speeds	128
5.4.6 Reduced Landing Flap	128
5.4.7 Delayed deployment of landing gear	129
5.4.8 Continuous climb operation	129
5.5 Spatial Management	131
5.6 Ground management	131

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATION

6. Conclusion	134
6.1 Legislative framework	136
6.2 Noise Abatement Plan	136
6.3 The Recommended Noise Abatement Measures in	
Three Axes	138
6.4 Land Use planning to reduce noise level around airport	138
6.5 Noise Reduction at airport	139
6.6 Recommendations	139
6.7 The principles of Action Plan	140
6.8 General Recommendation	142
References	144
Summary	
Arabic Summary	