DETERMINATION OF NUTRITIONAL REQUIREMENTS OF SOME ESSENTIAL AMINO ACIDS FOR TILAPIA FISH AND ITS IMPACT ON ITS ENVIRONMENT

By

Khaled Mohamed Wasly

B.Sc. Agric. Sci. (Animal Production), Ain Shams University, 1996

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Agricultural Science

Institute of Environmental Studies and Research

Ain Shams University

DETERMINATION OF NUTRITIONAL

REQUIREMENTS OF SOME ESSENTIAL AMINO

ACIDS FOR TILAPIA FISH AND ITS IMPACT ON ITS

ENVIRONMENT

By

Khaled Mohamed Wasly

B.Sc. Agric. Sci. (Animal Production), Ain Shams University, 1996
A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences Department of Agricultural Sciences

Under The Supervision of:

1. Prof. Dr. Mohamed Fathy Osman

Prof. of fish nutrition – Fac. of Agric., Ain Shams University

2. Dr. Mohamed Abdel Baky Amer

Assistant prof. of fish physiology – Fac. of Agric., Ain Shams University

3. Dr. Sanaa Abdel Hamid Mahfouz

Researcher in the Central Laboratory for Food and Feed, Agricultural Research Center.

تحديد الاحتياجات الغذائية من بعض الأحماض الأمينية الأساسية لأسماك البلطى و تآثيرها على بيئتها

رسالة مقدمة من خالد محمد واصلي جامعة عين شمس 1996 بكالوريوس في العلوم الزراعية (إنتاج حيواني) جامعة عين شمس

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية

> قسم العلوم الزراعية معهد الدراسات والبحوث البيئية جامعة عين شمس

تحديد الاحتياجات الغذائية من بعض الأحماض الأمينية الأساسية للسماك البلطى و تآثيرها على بيئتها

رسالة مقدمة من خالد محمد واصلي لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية قسم العلوم الزراعية

تحت إشراف:

1 - أ.د /محمد فتحى محمد عثمان

أستاذ تغذية الأسماك - كلية الزراعة - جامعة عين شمس

2- د/محمد عبد الباقي عامر

أستاذ مساعد فسيولوجيا الأسماك - كلية الزراعة - جامعة عين شمس

3- د/سناء عبد الحميد محفوظ

باحث بالمعمل المركزي للأغذية والأعلاف - مركز البحوث الزراعية

ABSTRACT

The present study was carried out in the fish laboratory of the Central Laboratory for Food and Feeds - Agriculture Research Center and was designed to determine the optimal level of methionine and lysine in tilapia fingerling diets; especially when using plant protein as the main protein source. Six experimental groups and a control treatment were assigned to one of the methionine or lysine level. The control group contained methionine and lysine levels which were recommended by Santiago and **Lovell** (1988). All experimental diets were isonitrogenus (30% crude protein) and isocaloric (430 kcal / 100 g diet). Four dietary treatments with ascending levels of methionine (2.02, 2.72 (control), 3.45 and 4.11 g / 100 g crude protein), and varying levels of lysine (3.93, 5.12 (control), 6.2 and 7.87 g/ 100 g crude protein) were formulated. The seven tested diets were fed to 7 tilapia fingerling groups with initial weight of 1.25 g / fish. Each experimental group consisted of 3 aquaria. The experiment (1) duration was 14 weeks and the fish were fed at a rate of 3.5% of fish body weight daily. The daily allowances were fed at 5 meals. Results in terms of the highest final body weight, weight gain, specific growth rate and best feed conversion and protein efficiency and feed utilization showed that tilapia fingerlings require 2.72 g methionine and 5.12 g lysine / 100 g crude protein. Quadratic regression analysis of weight gain (%) against dietary methionine and lysine levels indicated that the optimal dietary methionine and lysine levels required for maximum growth was determined to be 3.05 % and 5.69 % of the dietary protein diet in the presence of 1.25 % cystine of the dietary protein diet, respectively. The experiment (2) was done in order to study the effect of different treatments on Oreochromis niloticus water environment, by using the same experimental diets used in experiment (1). The ammonia, nitrite and nitrate concentration (mg/l) of water, for the fish given diets containing different levels of both methionine and lysine, were significantly lower (P<0.05) for fish fed the control diet compared with the fish fed diets contained higher methionine and lysine levels, while were not significantly different (P >0.05) with the fish fed diets contained lower methionine and lysine levels. The pH value among the experimental fish groups were not significantly different (P>0.05). The results of the present study showed that the dietary requirements of methionine and lysine for tilapia fingerlings were 3.05% and 5.69% of the dietary crude protein, respectively.

Key words: Nile tilapia, nutritional requirements, methionine, lysine, water quality.

CONTENTS

]	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	2
2.1. Tilapia as a main fish in Egyptian aquaculture	2
2.1.1. Historical.	2
2.1.2. Statistics.	3
2.2. Nutritional Requirements of tilapia	4
2.2.1. Protein	4
2.2.1.1 Protein Requirements	4
2.2.2. Energy requirement.	8
2.2.3. Protein: Energy ratio.	9
2.2.4. Carbohydrate requirement	10
2.2.5. Lipid requirements	11
2.2.6. Vitamin requirements	13
2.2.7. Minerals requirements	15
2.2.8. Amino acid requirements	17
2.3. Utilization of amino acids, by tilapia fish	20
2.4. Effect of balanced amino acid profile on the growth performance, feed	
utilization and body composition:	22
2.5. The effect of feed as an environmental pollutan	25
2.6. The optimum water quality required	26
3. MATERIALS AND METHODS	29
3.1. Experiment1	29
3.1.1. Culture conditions.	29
3.1.2. Diets and feeding regime	30
3.1.3. Chemical analysis.	31
3.1.4. Determination of amino acids	31
3.1.5. Measurements of growth performance, and feed utilization parameters	36
3.1.6. Water characteristics	37
3.2. Experiment 2	37
3. 2.1. Effect of different levels of methionine and lysine on the Nile tilapia	
environment	37

3.2.1.1. Determination of ammonia	37
3.2.1.2. Determination of nitrite	38
3.2.1.3. Determination of nitrate	38
3.3. Statistical Analysis	39
4. RESULT AND DISCUSSION.	40
4.1. Experimental (1)	40
4.1.1. Effect of feeding <i>O.niloticus</i> fingerling different methionine and lysine	
levels on growth performance	40
4.1.1.1. Effect of feeding <i>O.niloticus</i> fingerling different methionine levels on	
growth performance	41
4.1.1.2. Effect of feeding <i>O.niloticus</i> fingerling different lysine levels on growth	
Performance	45
4.1.2. Effect of feeding <i>O.niloticus</i> fingerling different methionine and lysine	
levels on feed efficiency and nutrient utilization	49
4.1.2.1. Effect of feeding <i>O.niloticus</i> fingerling different methionine level on	
feed efficiency and nutrient utilization	49
4.1.2.2. Effect of feeding <i>O.niloticus</i> fingerling different lysine level on feed	
efficiency and nutrient utilization	52
4.1.3. Effect of feeding <i>O.niloticus</i> fingerling different methionine and lysine	
level on body chemical composition	55
4.1.3.1. Effect of feeding <i>O.niloticus</i> fingerling different methionine levels on	
body chemical composition	55
4.1.3.2. Effect of feeding <i>O.niloticus</i> fingerling different lysine levels on body	
chemical composition.	59

4.2. Experimental (2)	66
4.2.1. Effect of feeding <i>O.niloticus</i> fingerling different methionine and lysine	
levels on water quality	66
4.2.1.1. Ammonia	67
4.2.1.2. Nitrite	69
4.2.1.3. Nitrate	71
4.2.1.4. pH	72
5. SUMMARY AND CONCLUSION	7 6
6. REFFRNCES.	80
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table 1: Protein requirements of tilapia cultured in fresh water	5
Table 2: The dietary lysine requirements for various aquatic organisms	20
Table 3: Proximate chemical analysis of experimental dietary ingredients	
as fed basis (%)	31
Table 4: Amino acid composition of experimental dietary ingredients used	
as fed basis (%)	32
Table 5: Composition of Vitamins and Minerals Premix* used in the	
experimental diets (Composition per 3kg premixes)	33
Table 6: Composition of the experimental diets used in the feeding trial	34
Table 7: Proximate chemical analysis and calculated energy content (Kcal	
DE/l00g DM) of the experimental diets used in the feeding	
trial	35
Table 8: Essential amino acid analysis of the experimental diets	
(g/ 100 g crude protein)	35
Table 9: Growth performance of Oreochromis niloticus fish fed the	
experimental diets	40
Table 10: Feed utilization parameters of <i>Oreochromis niloticus</i> fish fed the	
experimental diets	49
Table 11: chemical composition of Oreochromis niloticus fish fed the	
experimental diets	55
Table 12: Water parameters of Oreochromis niloticus fish fed the	
experimental diets	66

LIST OF FIGURES

Fig.	Page
Fig. 1: Production of tilapia in Egypt from 1998 to 2003	3
Fig. 2: Weight gain (%) changes of <i>O.niloticus</i> fish given diets containing	
different methionine levels	44
Fig. 3: SGR changes of O.niloticus fish given diets, containing different	
methionine levels	44
Fig. 4: Weight gain (%) changes of <i>O.niloticus</i> fish given diets containing	
different lysine levels	48
Fig. 5: SGR changes of O.niloticus fish given diets containing different	
lysine levels	48
Fig. 6: FCR changes of O.niloticus fish given diets Containing different	
methiomime levels	51
Fig. 7: PER changes of O.niloticus fish given diets Containing different	
methionine levels.	51
Fig. 8: FCR changes of O.niloticus fish given diets Containing different	
lysine levels	54
Fig. 9: PER changes of O.niloticus fish given diets Containing different	
lysine levels	54
Fig. 10: Moisture % changes of <i>O.niloticus</i> fish given diets containing	
different methionine levels	57
Fig. 11: Crude protein % changes of <i>O.niloticus</i> fish given diets containing	
different methionine levels	57
Fig. 12: Ether extract % changes of <i>O.niloticus</i> fish given diets containing	
different methionine levels	58
Fig. 13: Ash % changes of O.niloticus fish given diets containing different	
methionine levels	58
Fig. 14: Moisture % changes of <i>O.niloticus</i> fish given diets containing	
different lysine levels	61
Fig. 15: Crude protein % changes of <i>O.niloticus</i> fish given diets containing	
different lysine levels	61

Fig. 16: Ether extract % changes of <i>O.niloticus</i> fish given diets containing	
different lysine levels	62
Fig. 17: Ash % changes of O.niloticus fish given diets containing different	
lysine levels	62
Fig. 18: Relationship between WG % and dietary methionine levels for	
Oreochromis niloticus fingerlings based on broken-line regression	
analysis, where X axis represents the optimal dietary methionine	
levels for the maximum WG% of grouper	64
Fig. 19: Relationship between WG % and dietary lysine levels for	
Oreochromis niloticus fingerlings based on broken-line regression	
analysis, where represents the optimal dietary lysine levels for the	
maximum WG% of grouper	65
Fig. 20: Fish given diets containing different levels of methionine and	
lysine, represented as a relationship between water quality	
parameters (Ammonia concentration mg/l) of Oreochromis	
niloticus and time represented in days	69
Fig. 21: Fish fed different diets of methionine and lysine represented as a	
relationship between water quality parameters (nitrite	
concentration mg/l) of Oreochromis niloticus and time in days	71
Fig. 22: Fish given diets containing different levels methionine and lysine	
Represented as a relationship between water quality parameters	
(nitrate concentration mg/l) of Oreochromis niloticus and time in	
days	72
Fig. 23: Fish given diets containing different levels methionine and lysine	
represented as a relationship between water quality parameters	
(pH value) of <i>Oreochromis niloticus</i> and time in days	75

SYMBOLS LIST OF SCIENTIFIC TERMS AND ABBREVIATION

ADG Average Daily Gain

BW Body weight

Ca Calcium

CP Crude protein

d Day

DC Digestible carbohydrate

DM Dry matter

DO Dissolved Oxygen

E Energy

EE Ether Extract

FCE Feed conversion efficiency

FCR Feed Conversion Ratio

Fig. Figure

g gram

GE Gross energy

HCL Hydrochloric acid

I.U. International unit

K Potassium

Kcal kilo calorie

kg kilogram

1	liter
Ln	Natural Logaritm
ME	Metabolizable energy
mg	milligram
MSO	Methionine Sulphoxide
N	Nitrogen
Na	Sodium
NFE	Nitrogen Free Extract
NH_3	Ammonia
NO_2	Nitrite
NO_3	Nitrate
0.	Oreochromis
P	Phosphorus
PER	Protein efficiency ratio
P:E	protein energy ratio
pН	Hydrogen ions concentration
PPV %	Protein Productive Value
SGR	Specific growth rate (%/day)
<i>T</i> .	Tilapia
TAN	Total Ammonia Nitrogen
Vit. & Min.	Vitamins and Minerals Premix

W weight

W0 Initial weight (g/fish)

W1 Final weight (g/fish)

ACNOWLEDGMENT

First, I am deeply thankful to **Allah** to the grass of whom the present work was realized.

I wish to express my deepest sincere appreciation to **Prof. Dr. Mohamed Fathy Osman,** Prof. of fish nutrition – Faculty of Agriculture,

Ain Shams University, for his supervision, valuable assistance, useful advice, gratitude and his unlimited helps in writing.

I am also greatly indebted to **Dr. Mohamed Abdel Baky Amer,**Assistant prof of fish physiology – Faculty of Agriculture, Ain Shams
University, for his supervision, help and advice in writing the thesis and encouragement.

Deep gratitude is also extended to **Dr. Sanaa Abdel Hamid Mahfouz,** Researcher in the Central Laboratory for Food and Feed,

Agricultural Research Center, for her supervision and kind support through out this work.

Special thanks to **Dr. Ashraf Hashem Gomaa**, Researcher in the Central Laboratory for Food and Feed, Agricultural Research Center, for his supervision, help in the analysis part of study and encouragement.

Last but not least, my thanks are dedicated to all staff members of Agriculture Science department at Environmental Studies and Research and Central Laboratory for Food and Feed for their help.