Prevalent iron parameters among haemodialysis patients in insurance haemodialysis centers

Thesis submitted for partial fulfillment of M.Sc. degree in internal medicine

by

Mohamad Ahmad Abdou M.B.; B.Ch.

Under supervision of

Prof. Dr. Hisham El Sayed

Professor of internal medicine and nephrology Faculty of Medicine, Ain Shams University

Dr. Essam Nour El Din Afiffy

Lecturer of internal medicine and nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2011

PROTOCOL

Introduction

Anemia is common in patients with chronic kidney disease (Frei et al., 2009) and end stage renal disease patients receiving hemodialysis (Akhtar et al., 2003).

Anemia in end stage renal disease is not a trivial problem. There is a strong association between haemoglobin and risk of death in end stage renal disease (Levy. et al., 2004a).

Functional and absolute iron deficiencies are important causes of anemia in end stage renal disease. True iron deficiency is found in up to 40% of patients with end stage renal disease (Levy. et al., 2004b).

(**Fishbane.**, **2007**) stated that causes of iron deficiency in hemodialysis patients include:

- Depletion of iron stores.
- Chronic blood loss:
 - 1. Blood retention by the dialysis lines and filters.
 - 2. Blood sampling for laboratory testing.
 - 3. Accidents related to the vascular access.
 - 4. Surgical blood loss.
 - 5. Occult gastrointestinal bleeding.
- Decreased dietary iron absorption:
 - 1. Phosphate binders inhibit iron absorption.
 - 2. Histamine-2 blockers, proton pump blockers and functional achlorhydria impair iron absorption.
 - 3. Uremic gut does not absorb iron optimally.
- Increased iron demand:
 - 1. Due to increased rate of erythropoiesis induced by erythropoiesisstimulating agents.
 - 2. Impaired release of iron from storage tissues (reticuloendothelial blockade).

There are many tests that investigate anemia in end stage renal disease, such as: (haemoglobin level, red blood cell indices, blood film, white blood cells and platelets, reticulocyte count, serum iron and total iron binding capacity, transferrin saturation, serum ferritin, C-reactive protein and stool occult blood) (Levy. et al., 2004c).

Aim of the work

To study the prevalent iron parameters (serum iron, total iron binding capacity, transferrin saturation and serum ferritin) among hemodialysis patients in insurance hemodialysis centers.

Patients and methods

This study will include 200 hemodialysis patients on regular hemodialysis in El-Dokki 6th October Insurance Hospital, El-Mokattam Insurance Hospital and El-Suez Insurance Hospital.

All patients will be subjected to the following:

1- Full history taking:

Especially history of: (blood loss, blood transfusion, iron administration and erythropoiesis stimulating agents administration).

2- Full clinical examination.

3- Laboratory investigations:

- a) Serum iron, total iron binding capacity, transferrin saturation and serum ferritin.
- b) Complete blood count.
- C) Other investigations as appropriate.

References

- **1- Feri U., Kwan J., Spinowitz B.,** *et al.* (2009): Anemia management with subcutaneous epoetin delta in patients with chronic kidney disease (predialysis, hemodialysis, peritoneal dialysis): results of an open-label, 1-year study. BMC Nephrology; 10:5.
- **2-Akhtar N., Ahsan R., AbdulWakil M., et al.** (2003): Relationship between zinc and anemia in chronic hemodialysis patients. The Journal of Teachers Association RMC, Rajshahi; 16:1.
- **3- Levy J., Morgan J. and Brown E. (2004a):** Complications of ESRD: Anaemia. In: Oxford handbook of dialysis, 2nd edition. Oxford university press; 620.
- **4- Levy J., Morgan J. and Brown E. (2004b):** Complications of ESRD: Anaemia. In: Oxford handbook of dialysis, 2nd edition. Oxford university press; 624.
- **5- Fishbane S. (2007):** Clinical problem areas: Hematologic abnormalities. In: Handbook of dialysis, 4th edition. Editors: Daugirdas J., Blake P. and Ing T. Lippincott Williams & Wilkins; 528.
- **6- Levy J., Morgan J. and Brown E. (2004c):** Complications of ESRD: Anaemia. In: Oxford handbook of dialysis, 2nd edition. Oxford university press; 622.

Acknowledgement

First of all, great thanks for Allah, The Lord of universe for granting me life & ability to learn.

I would like to express my deepest thanks & appreciation to my advisor Prof. Dr. Hisham El Sayed, for his guidance & valuable scientific interpretation.

I am extremely grateful to Dr. Essam Nour El Din Afiffy, for his never ending help, valuable orientation U unlimited insistence for perfection.

I am also grateful to Dr. Ahmed Rashed Helal, for his great effort in the statistical analysis of this research.

Finally, I am extremely indebted to my family who provide me with love $\mathcal L$ support in all my life stages.

CONTENTS

	Page
REVIEW	1
Chapter 1: ANEMIA OF CHRONIC KIDNEY DISEASE	1
Anemia of chronic kidney disease	1
Iron deficiency anemia in hemodialysis patients	7
Chapter 2: IRON METABOLISM	14
Chapter 3: IRON PARAMETERS	24
Iron parameters	24
Iron parameters in hemodialysis patients	39
PATIENTS AND METHODS	43
RESULTS	45
DISCUSSION	73
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	87
Summary	87
Conclusions and Recommendations	89
REFERENCES	90

LIST OF ABBREVIATIONS

apo	Apoprotein	Hct	Hematocrite	
BM	Bone marrow	HCV Ab	Hepatitis C virus antibody	
BMP6	Bone morphogenetic protein 6	HD	Hemodialysis	
CBC	Complete blood count	НН	Hereditary hemochromatosis	
CHr	Reticulocyte hemoglobin content	HIF	Hypoxia inducible factor	
CI	Confidence interval	HIV Ab	Human immune-diffency virus antibody	
CKD	Chronic kidney disease	HJV	Hemojuvelin	
Ср	Ceruloplasmin	HO-1	Heme oxygenase 1	
CRP	C-reactive protein	I.V.	Intravenous	
DcytB	Duodenal cytochrome B	ID	Iron deficiency	
DMT-1	Divalent metal transporter-1	IDA	Iron-deficiency anemia	
ELISA	Enzyme-linked immunosorbent assay	IMP	Integrin-mobilferrin paraferritin	
EPO	Erythropoietin	IREs	Iron-responsive elements	
ESAs	Erythropoiesis stimulating agents	IRPs	Iron regulatory proteins	
ESRD	End-stage renal disease	Jak2	Janus kinase 2	
FID	Functional iron deficiency	KDOQI	Kidney Dialysis Outcomes Quality Initiative	
FLVCR	Feline leukemia virus subgroup C receptor	LC/MS- MS	Liquid chromatography tandem mass spectrometry	
FPN	Ferroportin	LHD%	Low haemoglobin density	
GFR	Glomerular filtration rate	LVH	Left ventricular hypertrophy	
GIT	Gastrointestinal tract	МСН	Mean cell hemoglobin	
Hb	Hemoglobin	MCHC	Mean cell hemoglobin concentration	
HBVsAg	Hepatitis B virus surface antigen	MCV	Mean cell volume	

Nramp1	Natural resistance-associated macrophage protein 1	SELDI- TOF MS	Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry
PHRC	Percentage of hypochromic red cells	SI	Serum iron
RBCs	Red blood cells	sTfR	Soluble transferrin receptor
RDW	Red blood cell distribution width	Tf	Transferrin
RE	Reticuloendothelial	TfR	Transferrin receptor
rHuEPO	Recombinant human erythropoietin	TIBC	Total iron-binding capacity
RPM	Round per minute	TSAT	Transferrin saturation
RR	Relative risk	WBCs	White blood cells
SD	Standard deviation	ZnPP	Zinc protoporphyrin

LIST OF TABLES

Table	Description				
1	Mean Hb levels and percentage of patients with Hb levels <11 g/dl who have been on dialysis therapy for more than 180 days and at the time of starting dialysis, by country				
2	Pharmacological properties of parenteral iron products	13			
3	Distribution of body iron in men and women	14			
4	Measurements of iron stores	25			
5	Measurements of iron stores	31			
6	Basic data of iron deficient patients	46			
7	Basic data of iron overload patients	47			
8	Comparison between male and female patients as regard different parameters	48			
9	Correlation between hemoglobin & different parameters	52			
10	Correlation between MCV and different parameters	54			
11	Correlation between MCH and different parameters	56			
12	Comparison between CRP +ve and CRP -ve patients as regard different parameters	57			
13	Comparison between iron deficient and iron overloaded patient groups as regard the mean dialysis duration and the mean dialysis time per week	61			
14	Comparison between patients with and those without history of GIT bleeding as regard different parameters	61			
15	Comparison between patients who received H ₂ Bs or PPIs & those who did not as regard different parameters.	65			
16	Correlation between erythropoietin dose and different parameters	68			
17	Correlation between IV iron dose & different parameters	70			

LIST OF FIGURES

Figure	Description	Page			
1	Anemia assessment flowchart	5			
2	Flow chart for adjusting the erythropoiesis stimulating agents (ESAs) dose based on hemoglobin results				
3	Flow chart for IV iron management, transferrin saturation (TSAT) and erythropoietin (EPO)				
4	The iron cycle	15			
5	The absorption of dietary iron	17			
6	The transferrin cycle	19			
7	Reticuloendothelial iron metabolism and recycling	22			
8	Regulation of iron homeostasis by hepcidin				
9	Anemia severity and red blood cell morphology				
10	Regulation of hepcidin expression and its effect on enterocytes and macrophages				
11	Putative regulation of hepcidin in chronic kidney disease	42			
12	Gender distribution of the studied patients	45			
13	Gender distribution in iron deficient patients	47			
14	Gender distribution in iron overload patients				
15	Histogram representing the comparison between mean hemoglobin level in male and female patients				
16	Linear regression curve between transferrin saturation and ferritin				
17	Linear regression curve between hemoglobin and ferritin	51			
18	Linear regression curve between hemoglobin and iron level	51			

19	Linear regression curve between hemoglobin and TSAT					
20	Linear regression curve between MCV & serum iron					
21	Linear regression curve between MCV & transferrin saturation	53				
22	Linear regression curve between MCV & ferritin	53				
23	Linear regression curve between MCH and iron level					
24	Linear regression curve between MCH and transferrin saturation	55				
25	Linear regression curve between MCH and ferritin level	55				
26	Linear regression curve between MCH and hemoglobin level	56				
27	Linear regression curve between albumin and hemoglobin level	56				
28	Histogram representing the comparison between mean ferritin level in CRP +ve and CRP -ve patients	58				
29	Histogram representing the comparison between mean (TSAT) percentage in patients with CRP +ve and CRP -ve patients					
30	Histogram representing the comparison between mean serum iron in patients with CRP +ve and CRP -ve patients					
31	Histogram representing the comparison between mean hemoglobin level in patients with & without history of GIT					
32	Histogram representing the comparison between mean iron level in patients who received and those who did not receive H ₂					
33	Histogram representing the comparison between mean ferritin level in patients who received and those who did not receive H ₂					
34	Linear regression curve between erythropoietin dose and TSAT	69				
35	Linear regression curve between erythropoietin dose & ferritin level	69				
36	Linear regression curve between IV iron dose & serum iron level	70				
37	Linear regression curve between IV iron dose & serum frritin level	71				
38	Linear regression curve between IV iron dose & TAST	71				

REVIEW

CHAPTER 1 ANEMIA OF CHRONIC KIDNEY DISEASE

Anemia in chronic kidney disease

Definition of anemia:

Anemia is defined by the World Health Organization as a hemoglobin (Hb) concentration of less than 13 g/dL in adult men and non-menstruating women and less than 12 g/dL in menstruating women (Wish., 2009).

Epidemiology of anemia in chronic kidney disease:

Anemia in patients with renal disease has been known for more than 170 years (Besarab. et al., 2009). In general, there is a progressive increase in the incidence and severity of anemia with declining renal function. The reported prevalence of anemia by (CKD) stage varies significantly and depends to a large extent on the definition of anemia and on whether study participants are selected from the general population, are at high risk of (CKD), are diabetic or are already under the care of a physician (Macdougall. et al., 2007).

Hemoglobin levels in patients on dialysis						
	Among patients on dialysis>180 days			Among patients new to ESRD, at start of dialysis		
Country	n	Mean Hb (g/dl)	Hb <11 g/dl (% of patients)	n	Mean Hb (g/dl)	Hb <11 g/dl (% of patients)
Sweden	466	12.0	23	168	10.7	55
United States	1690	11.7	27	458	10.4	65
Spain	513	11.7	31	170	10.6	61
Belgium	442	11.6	29	213	10.3	66
Canada	479	11.6	29	150	10.1	70
Australia and New Zealand	423	11.5	36	108	10.1	70
Germany	459	11.4	35	142	10.5	61
Italy	447	11.3	38	167	10.2	68
United Kingdom	436	11.2	40	93	10.2	67
France	341	11.1	45	86	10.1	65
Japan	1210	10.1	77	131	8.3	95

Table 1: Mean hemoglobin (Hb) levels and percentage of patients with Hb levels <11 g/dl who have been on dialysis therapy for more than 180 days and at the time of starting dialysis, by country (**Macdougall.** *et al.*, **2007**).

Population studies such as the National Health and Nutrition Examination Survey (NHANES) by the National Institutes of Health and the Prevalence of Anemia in Early Renal Insufficiency (PAERI) Study suggest that the incidence of anemia is less than 10% in CKD stages 1 and 2, 20% to 40% in CKD stage 3, 50% to 60% in CKD stage 4 and more than 70% in CKD stage 5 (**Wish.**, **2009**). If anemia is not treated in end-stage renal disease (ESRD) patients, hematocrit values of 18%-24% are typical (**Fishbane.**, **2007**).

Target level of hemoglobin (Hb) in chronic kidney disease:

The target (Hb) level for anemic patients with (CKD) treated with erythropoiesis stimulating agents (ESAs) has been a subject of considerable controversy, because observational studies have disagreed with the results of interventional trials (Wish., 2009).

The 2001 version of the NKF-K/DOQI anemia guidelines recommended a target (Hb) of 11 to 12 g/dL in ESA-treated anemic patients with CKD (Wish., 2009). The UK Renal Association guidelines recommended a target (Hb) level above 10 g/dL, but the upper limit is not specified. The European guidelines recommended a target (Hb) level above 11 g/dL (but not above 14 g/dL). They recommended aiming for (Hb) level of (11-12) g/dL if risk of cardiac failure or ischemic heart disease is present (Steddon. et al., 2006).

Although higher targets of hemoglobin that had been thought as early fears about increased thrombotic risks and loss of vascular access in hemodialysis patients were dispelled, it is now thought that over-zealous correction (above 12 g/dL) of (Hb) leads to increased mortality in patients with ischemic heart disease and heart failure (**Steddon.** *et al.*, 2006). Recent studies, the Correction of Hemoglobin and Outcomes in Renal Insufficiency (CHOIR) and the Cardiovascular Risk Reduction by Early Anemia Treatment with Epoetin Beta (CREATE), have suggested that targeting higher hemoglobin levels (generally above 12.5 g/dL) may result in higher cardiovascular adverse events (**Provenzano.**, 2009).

Based on the results of the (CHOIR) and (CREATE) studies, the Food and Drug Administration (FDA) changed the package insert for epoetin and darbepoetin to state that the physician should "individualize dosing to achieve and maintain hemoglobin levels within the range of 10 to 12 g/dL" in patients with CKD. The