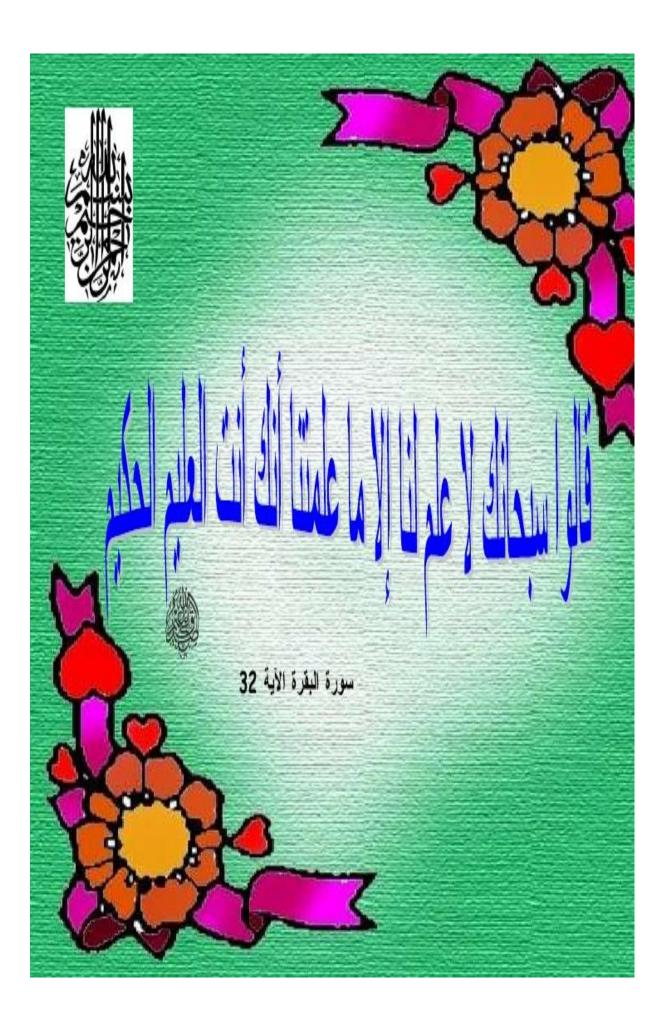
Updates On Optic Disc And Nerve Fiber Layer Imaging In Glaucoma

Essay submitted for partial fulfillment Of Master degree in Ophthalmology

Presented By
Khaled Ibrahim Mohamed Zahran
(M.B.B.Ch)


<u>Under supervision of</u> **Prof. Dr. Hany Mohamed EL Ibiary**

Professor of Ophthalmology Faculty of Medicine-AinShamsUniversity

Dr. Lamia Salah Elewa

Assistant Professor of Ophthalmology Faculty of Medicine-AinShamsUniversity

> AinShamsUniversity Cairo 2015

Acknowledgment

First of all thanks to ALLAH for the great help in this work, asking Him to save my way and to give me ability to do my work hardly and faithfully.

I offer my thanks and gratitude to **Prof. Dr. Hany Mohamed EL Ibiary**, Professor of Opthalmology, Faculty of Medicine, Ain Shams University, for his sincere guidance, keen advice, expert assistance, great help and kind supervision throughout this whole work.

My deepest thanks and appreciation are presented to **Dr. Lamia Salah Elewa**, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for her patience, support, valuable suggestions, and continuous encouragement.

Khaled Ibrahim Zahran

CONTENTS

	Page
List of Abbreviations.	I
List of Figures	III
Introduction	1
Aim of the Work	3
Anatomy Of ONH And RNFL	5
Glaucomatous Changes on ONH and RNFL	14
Pathophysiological Changes of ONH And RNFL In Glaucoma	30
Clinical Examination of ONH And RNFL	35
ONH and RNFL Imaging in Glaucoma	40
Confocal Scanning laser Ophthalmoscopy	46
Scanning laser polarimetry	71
Optical Coherence Tomography	85
The Retinal Thickness Analyser	105
Summary	112
References	115

List of Abbreviations

JON	nterior Ischemic Optic Neuropathy
r	rachnoid
/D ratio	up To Disc Ratio
RA	entral Retinal Artery
RV	entral Retinal Vein
SLO	onfocal Scanning Laser Ophthalmoscopy
SME	linically Significant Macular Edema
u	ura
CC	ixed Corneal Compensator
D	ourier Domain Technology
ig.	igure
PA GDx	uided Progression Analysis
ON	laucomatous Optic Neuropathy
IRT	leidelberg Retina Tomography
TG	ligh-Tension Glaucoma
LM	nternal Limiting Membrane
OP	ntraocular Pressure
SNT	nferior, Superior, Nasal Temporal
ASIK	aser Assisted in-Situ Keratomileusis
IIT	Iassachusetts Institute of Technology
IMP s	I etalloproteinases
FI	erve Fiber Indicator
FL	erve Fiber Layer
TG	ormal-Tension Glaucoma
BF	cular Blood Flow
CT	ptical Coherence Tomography
HTS	cular Hypertension Treatment Study
NH	ptic Nerve Head
OAG	rimary Open-Angel Glaucoma
P	erfusion Pressure
RK	hotorefractive keratectomy

V	ial Vessels
DS	anked Segment Distribution
GCs	etinal Ganglion Cells
NFL	etinal Nerve Fiber Layer
PE	etinal Pigment Epithelium
TA	etinal Thickness Analyzer
D	pectral Domain
LP	canning Laser Polarimetry
PCA	hort Posterior Ciliary Arteries
D	ime Domain
SD	opography Standard Deviation
SNIT graphs	emporal, Superior, Nasal, Inferior, Temporal
SNIT SD	SNIT Standard Deviation
CC	Variable Corneal Compensator
Н	rcle of Zinn-Haller

LIST OF FIGURS AND TABELS

Figure numbe r	Content	age
(1)	ppearance of an average normal optic disc.	5
(2)	etinotopic organization of the ganglion cell axons. (A) The retinotopic organization of the ganglion cell axons as they enter the optic nerve. (B) A frontal view of the distribution pattern of axons.	6
(3)	Normal optic discs with no optic disc excavation. Normal optic nerve head showing a normal cup and healthy neuroretinal rim. Normal optic discs demonstrating parapapillary atrophy.	7
(4)	ptic cup	8
(5)	ivisions of the anterior optic nerve	9
(6)	etro laminar zone	11
(7)	he blood supply to theanterior optic nerve	12
(9)	isc asymmetry	15
(10)	1)Temporal neural rim pallor in a patient with a history	7

	of anterior ischemic optic neuropathy	
	Severe loss of the neural rim of a patient with advanced glaucoma.	8
(11)	aring of a circumlinear disc vessel superiorly.	20
(12)	ollateral disc vessels in a patient with advanced glaucoma	20
(13)	haracteristic appearance and location of a flame- shaped hemorrhage in the inferotemporal portion of the nerve rim(arrow)	22
(14)	arapapillary changes	23
(15)	ocal glaucomatous damage	25
(16)	Iyopic glaucomatous disc	26
(17)	enile sclerotic glaucomatous disc	26
(18)	oncentric glaucomatous enlargement	27
(19)	lit defect	28
(20)	Vedge defect	29
(21)	otal loss	29
(22)	actors contributing to pathophysiology of glaucomatous neurodegeneration	31
(23)	tereoscopic photography	38
(24)	icture of HRT 1 and HRT II	47
(25)	implified schema of a confocal system	48
(26)	A) Color-coded topography and (B) reflectivity images	49

(27)	tereometric analysis from the Heidelberg Retina Tomograph after the disc border of the eye has been defined	50
(28)	eference plane as calculated by HRT is based on disc contour delineation	51
(29)	RT Stereometric parameters of the optic disc	51
(30)	RT Stereometric parameters of the optic disc	52
(31)	xample of global and sector depending parameters of the Heidelberg retina tomography	53
(32)	IRA of normal aspect of the optic disc glaucoma	55
(33)	IRA of advanced glaucoma	56
(34)	RT Glaucoma Probability Score	57
(35)	ptic nerve disc delineation by operator	59
(36)	RT II baseline printout	64
(37)	RT 3 baseline printout	65
(38)	ypical glaucomatous changes of the ONH as a schematic figure	67
(39)	aseline HRT	69
(40)	ollow-up HRT	69
(41)	Dx VCC Scanning Laser Polarimeter (Advanced Serial Analysis)	72
(42)	wo polarized light pass through the RNFL (a birefringent medium) and one component is retarded	73

	proportional to the RNFL thickness	
(43)	Dx VCC clinical printouts from the glaucomatous eye	78
4)	Thickness Map	
		80
(45)	eviation Map	81
(46)	SNIT graph	82
(47)	arameter Table	82
(48)	Dx VCC Scanning Laser Polarimeter (Advanced Serial Analysis)	84
(49)	he Stratus OCT	86
(50)	chematic diagram of the high-speed, fiberoptic OCT scanner	89
(51)	ptical coherence tomography.(A)Fundus image.(B) The layer color-coded red	91
(52)	he Stratus OCT 'RNFL Thickness Average Analysis' includes a graphical depiction of the RNFL thickness profile	95
(53)	he StratusOCT 'Optic Nerve Head Analysis' includes a false colored cross-sectional image of the optic nerve head obtained along one of the six radial scans	96
(54)	NFL thickness change analysis. A composite figure illustrating available StratusOCT information for detecting RNFL thickness change over time	97
(55)	pectral Domain-OCT	98

(56)	omparison of Stratus OCT and spectral domain OCT ONH scan patterns.(a): Misalignment of Stratus OCT radial scan lines (b): Spectral-domain OCT raster scan lines cover a 3D area,	00
(57)	a-c) Printouts from the commercially available spectral domain optical coherence tomography devices. (a) RTVue, (b) Cirrus HD-OCT, and (c) Spectralis OCT	01

TABELS

Number 1	correction factors for estimating optic disc diameter	37	
-------------	---	----	--

INTRODUCTION

Glaucoma is a slowly progressive optic neuropathy that result in irreversible damage to the ganglion cell layer, retinal nerve fiber layer (RNFL), death of optic nerve axons and collapse of the lamina cribrosa leading to excavation of optic nerve head (ONH) and visual field loss(**Swiderski et al.,2000**).

Since glaucoma damage is irreversible, we need to diagnose it early and follow it up accurately. Investigations are trying to find better techniques for early detection of glaucoma(Alm A.,2000).

Both the diagnosis and assessment of progression of glaucoma are often based on a method of ophthalmic testing to identify and quantify the pattern of visual defects (i.e., functional defects) or structural defects (Weinreb & Kaufman, 2009).

Because structural changes of optic disc often precede the development of visual field loss in glaucoma, detection of optic disc damage plays a vital role in diagnosis of glaucoma, especially in its early stages. Although ophthalmoscope and fundus photography are still used for assessing glaucomatous optic disc damage, they are limited by their subjective and qualitative nature(**Zangwill et al.,2005**).

Several imaging technologies have become available to evaluate objectively the optic disc and RNFL. One of these technologies, scanning laser polarimetry (SLP), provides quantitative estimates of RNFL thickness. Another, confocal scanning laser ophthalmoscopy (CSLO), evaluates the topography of the optic disc, although it also can provide indirect estimates of RNFL integrity(*Medeiro et al.*, 2004).

The Heidelberg Retina Tomograph (HRT) confocal scanning laser opthamoscopy, with its new version of software, called Advanced

Glaucoma Analysis 3.0 (HRT3), provides larger, ethnic selectable normative databases and includes new data analysis tools(*Coops et al.*, 2006).

Optical coherence tomography (OCT) has become an important tool which has contributed to earlier and more accurate diagnosis of glaucoma over the past decade. Although OCT has been used, for the most part, to evaluate RNFL thickness, recent improvement in software also have made possible evaluation of ONH topography for glaucoma diagnosis and follow up(*Ferreras et al.*, 2007).

There are few studies involving the role of imaging in human glaucoma progression detection, hampered in part by rapidly evolving changes in technology that disrupt longitudinal studies. Progressive RNFL thinning measured with OCT and optic nerve cupping measured with CSLO, have been reported in experimental models involving non-human primates. At present there is limited evidence to support that imaging may assist the clinician in identifying progression of established glaucoma(*Shimazawa et al.*, 2013)

Yet, many unanswered questions exist regarding how to integrate such measurements in glaucoma clinical practice and clinical trials. It is time to assess critically what we know as well as we still need to learn, about imaging in glaucoma clinical care and research(*Medeiro et al.*, 2005).

AIM OF THE STUDY

The purpose of this study is to discuss different new techniques concerning optic nerve head and nerve fiber layer evaluation for early detection and follow up of glaucoma.

ANATOMY OF OPTIC NERVE HEAD AND NERVE FIBER LAYER