

Role of Echocardiography in Detection of Subclinical Valvulitis in Patients with Rheumatic Fever

Thesis Proposal

Submitted for fulfillment of PhD in Childhood Studies

(Child Health and Nutrition)

Department of Medical Studies

By

Dr. Asmaa Zakareya Mohammad

MB.Bch. M.Sc. Pediatrics

Supervised by

Dr. Mohamed Salah Eldin Mostafa

Professor of Preventive Medicine and Epidemiology

Institute of Post graduate Childhood Studies

Ain Shams University

Dr. Hala Salah Eldin Hamza

Professor of Pediatrics - Head of Rheumatic Fever Clinic

Cairo University Children's Hospitals

Ain Shams University

2013

Contents

Title	Page
List of Abbreviations	ii
List of Tables	iv
List of Figures	vi
Introduction	I
Aim of the Study	IV
Chapter I Streptococcal Pharyngitis	1
Chapter II Rheumatic Fever	18
Chapter III Rheumatic Carditis	29
Chapter IV Management of Rheumatic Fever	55
Patients and Methods	67
Results	70
Discussion	87
Conclusion	100
Recommendation	102
Summary	104
References	107
Annex	134
Arabic Summary	

List of Abbreviations

ACE: Angiotensin Converting Enzyme

AHA: American Heart Association

AN: Aschoff Nodules

AO: Aorta

AR: Aortic Regurge

ARF: Acute Rheumatic Fever

ASOT: AntiStretolysin O Titre

AV: Aortic Valve

AVB: AtrioVentricular Block

CHF: Congestive Heart Failure

CRP: C Reactive Protein

CSANZ: Cardiac Society of Australia and NewZealand

DNase: Deoxyribonuclease

ECG: Electrocardiogram

ESR: Erythrocyte Sedimentation Rate

GABHS: Group Aβ Hemolytic Streptococci

GAS: Group A Streptococcus

GI: Gastro-Intestinal

GU: Genito-Urinary

HLA: Human Leucocytic Antigen

HRQoL: Health Related Quality of Life

IE: Infective Endocarditis

IU: International Unit

IVIG: Intravenous Immunoglobulin

IVR: Initiative for Vaccine Research

LA: Left Atrium

LAP: Long Acting Penicillin

LV: Left Ventricle

LVOT: Left Ventricular Outflow Tract

MR: Mitral Regurge

MV: Mitral Valve

NHFA: National Heart Foundation of Australia

NSAID: Non-Steroidal Anti-Inflammatory Drugs

RA: Right Atrium

RADT: Rapid Antigen Detection Test

RF: Rheumatic Fever

RHD: Rheumatic Heart Disease

RV: Right Ventricle

RVOT: Right Ventricular Outflow Tract

TSS: Toxic Shock Syndrome

ULN: Upper Limit of Normal

URTI: Upper Respiratory Tract Infection

List of Tables

Table 1	Frequency of Arthritis in Study Patients	Page 70
Table 2	Frequency of Chorea in Study Patients	Page 70
Table 3	Frequency of Subclinical Valvulitis in Study Patients	Page 70
Table 4	Relation between Subclinical Valvulitis and Sex	Page 72
Table 5 a	Statistics of Age in Total Study Patients	Page 72
Table 5 b	Statistics of Age by Sex in Total Study Patients	Page 72
Table 6	Age Frequencies by Groups in Study Patients	Page 73
Table 7	Correlation between Subclinical Valvulitis and Age	Page 73
Table 8	Frequency of Positive Family History in Study Population	Page 74
Table 9	Relation of Family History and Subclinical Valvulitis	Page 74
Table 10	Frequency of Fever in Study Population	Page 75
Table 11	Relation of Fever and Subclinical Valvulitis	Page 75
Table 12 a	Statistics of Tonsillitis in Study Patients	Page 76
Table 12 b	Frequency of Attacks of Tonsillitis in Patients with Subclinical Valvulitis	Page 76
Table 13	Relation between Subclinical Valvulitis and Tonsillitis	Page 76
Table 14	Relation between Tonsillitis and Arthralgia	Page 77
Table 15	Frequency of Subclinical Valvulitis in Patients with Arthritis	Page 77
Table 16	Mitral Valve Affection in Patients with Arthritis	Page 78
Table 17	Aortic Valve Affection in Patients with Arthritis	Page 78
Table 18	Frequency of Subclinical Valvulitis in Patients with Chorea	Page 79
Table 19	Mitral Valve Affection in Patients with Chorea	Page 79
Table 20	Aortic Valve Affection in Patients with Chorea	Page 80
Table 21	Relation between Mitral Regurge and Sex	Page 80
Table 22	Relation between Aortic Regurge and Sex	Page 81
Table 23	Levels and Frequencies of ASOT in Patients	Page 81

Table 24	Statistics of ASOT levels in Patients with Subclinical Valvulitis	Page 82
Table 25 a	Mean ASOT levels in Patients with Arthritis and Subclinical Valvulitis	Page 83
Table 25 b	Correlation Between ASOT Levels in Patients with Arthritis and Subclinical Valvulitis	Page83
Table 26	Frequencies of ESR Levels in Patients with Subclinical Valvulitis	Page 84
Table 27	Mean ESR levels in patients with Arthritis and Subclinical Valvulitis	Page 84
Table 28	Relation between ESR and Subclinical Valvulitis	Page 85
Table 29	Relation of ESR in patients with Arthritis and Subclinical Valvulitis	Page 85
Table 30	Frequency of Patients with Positive CRP in Study Patients	Page 86
Table 31	Frequency of Subclinical Valvulitis and CRP	Page 86

List of Figures

Figure 1	Scoring System for Streptococcal Pharyngitis	Page 5
Figure 2	Suppurative Tonsillitis	Page 7
Figure 3	Scarlet Fever Circumoral Pallor	Page 7
Figure 4	Strawberry Tongue	Page 7
Figures5 (a,b)	Heart Views in Echocardiography	Page 50
Figure 6	Physiologic Mitral Regurge	Page 51
Figure 7	Pathologic Mitral Regurge	Page 51
Figure 8	Pathologic Mitral Regurge	Page 52
Figure 9	Pathologic Aortic Regurge	Page 52
Figure 10	Distribution of Patients with Rheumatic Fever and Subclinical Valvulitis by Governorate	Page 71
Figure 11	Sex Distribution of Subclinical Valvulitis	Page 71
Figure 12	Relation between Subclinical Valvulitis and Age	Page 73
Figure 13	Relation between Subclinical Valvulitis and Tonsillitis	Page 77
Figure 14	Relation between ASOT and Subclinical Valvulitis	Page 82
Figure 15	Relation between Subclinical Valvulitis and ESR Levels	Page 86

Acknowledgement

First of all praise is to ALLAA the most beneficial and the most merciful for helping me in every single step in this work and in my life.

It is a great honour to express my gratitude and respect to Prof. Dr. Mohamed Salah Eldin Mostapha Professor of Preventive Medicine and Epidemiology Institute of Post Graduate Childhood Studies Ain Shams University, for exerting a great effort in supporting me in this work. I would like to thank him for his kindness and guidance and his fatherly attitude. Really, I have benefited a lot from his experience and I am really grateful to him for supplying me with scientific books and guiding me in the field of statistics and in my life aspects.

I am deeply indebted and really grateful to Prof. Dr. Hala Salah Eldin Hamza Professor of pediatrics-Head of "Rheumatic Tever" clinic — Center for Social Preventive Medicine — Cairo University Hospitals, for being keen and sincere in establishing of the clinic for the sake of the patients, providing me with scientific quidelines in weekly conferences, teaching me echocardiography and supplying the with medical and electronic needs and establishing a database system for registery of rheumatic fever patients. I would like to thank her again for her continous support and guidance.

Dedication

So would like to dedicate this work to my family, my mother who suffered a lot caring for me and supporting me with her continous encouragement and prayers despite her illness, my father £akareya for his continous support and care, and for helping me with his valuable advice, my sister £atemah assistant proffessor in £aculty of Women's Follege for Arts, Biences and £ducation, for helping me with her experience and knowlege, and my brother engineer ¥ahya for his care and help, and for technical support of my devices. Thanks for my family for their continous care, support and guidance in every single aspect of my life, without them my life would be a mess.

Abstract

Background: Echocardiography is an important tool in detecting subclinical valvulitis, thus allowing early diagnosis, treatment, prophylaxis, and preventing complications of rheumatic heart disease (RHD).

Aims and Objectives: This study aims to identify the role of echocardiography in detection of subclinical valvulitis in patients with rheumatic fever with no clinical evidence of RHD.

Methodology: This is a cross sectional study where patients coming to "Rheumatic Fever" clinic in Cairo University Hospitals with different complaints were examined and those with acute rheumatic arthritis and rheumatic chorea without clinical evidence of carditis were subjected to 2D Doppler echocardiography to detect subclinical valve affection according to WHO echocardiographic criteria during the period from the beginning of September 2011 to the end of December 2012.

Results: A total of 1096 patients with different presentations were examined and 50 patients fulfilled the study inclusion and exclusion criteria, where 26 patients (16 females and 14 males) representing 52 % of study patients had subclinical valvulitis by 2 D Doppler echocardiography. The majority of cases presented with acute arthritis (44 patients representing 88 % of study population); of those 21 patients representing 42% of total study population had subclinical valvulitis. On the other hand 6 patients presented with chorea constituting 12% of study patients where 5 patients representing 10% of total patients had subclinical valve affection. Most patients were from Giza governorate followed by Cairo governorate.

In conclusion: Echocardiography should be performed in patients with rheumatic fever with no clinical carditis and should be included in Jone's criteria for diagnosis of rheumatic heart disease.

Key Words:

Rheumatic Fever - Subclinical Valvulitis - Echocardiography

Introduction

Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are global health problems affecting mainly children of developing countries and indigenous populations of developed countries (*Pandey et al.*, 2012).

It is a postinfectious, nonsuppurative sequela of pharyngeal Group A β hemolytic *Streptococcus* (GABHS). All manifestations of rheumatic fever can resolve except valve damage which can become a chronic condition leading to congestive heart failure, strokes, endocarditis, and death (*Carapetis et al.*, 2005).

Worldwide, incidence of RF is 19/100,000 (range, 5 to 51/100,000) (*Pessler and Sherry, 2010*). In Egypt, the prevalence of RHD was reported to be 7 per 10,000 in school children (*El-Aroussy et al., 3013*). In 2005, *Carapetis and collegues* estimated a world burden of 2.4 million children aged 5-14 years affected and that a total population of 15-20 million was living with rheumatic heart disease at that time and that 233 thousand people per year died of RHD.

Studies show that individuals who have had an attack of rheumatic fever are at very high risk of developing recurrences after subsequent infection by group A streptococcal pharyngitis (*Gerber et al.*, 2009).

According to revised Jones criteria, the diagnosis of rheumatic fever can be made when two of the major criteria, or one major criterion plus two minor criteria are present along with evidence of streptococcal infection. Exceptions are chorea and indolent carditis, each of which by itself can indicate RF (*Saxena*, 2000).

I

The Major criteria are migratory polyarthritis, carditis, Sydenham chorea, erythema marginatum, and subcutaneous nodules. While the Minor criteria are arthralgia, fever, elevated acute-phase reactants, and first degree heart block (*Special Writing Group of the AHA*, 1992).

Due to subclinical or atypical presentations of rheumatic fever, lack of seeking medical advice, or under reporting, up to 10 times the current number of known sufferers remain undiagnosed in these countries (*Farrar and Butcher*, 2012).

Subclinical valvulitis is defined as pathological valvular regurgitation detected on echocardiography that is not evident clinically (*Turbidy-Clark* and *Carapetis*, 2007).

A national study of ARF in children in Australia showed that the reasons why patients do not fulfill the RF criteria include:(1) atypical presentations of RF, (2) the high incidence of delayed presentation (more than 20% of cases in one study) (3) and incomplete investigation, commonly resulting in the absence of results for the erythrocyte sedimentation rate (ESR), C reactive protein (CRP), electrocardiogram (ECG) or streptococcal serology (*Noonan et al., 2013*).

Subclinical valvulitis occurs in 8-75% of first episode of ARF (*Ekici et al.*, *2012*). A systematic review done in 2007 from 23 different studies estimated the prevalence of subclinical valvulitis was 17% among those with ARF (*Tubridy-Clark*, *and Carapetis*, *2007*).

The diagnosis of patients with subclinical valvulitis may be overlooked unless echocardiography is used. Thus, because they will receive secondary preventive treatment inadequately or will not receive at all, these patients may experience more severe and early RHD with recurring episodes (*Carapetes et al.*, 2007).

It was previously claimed that subclinical carditis was caused by examination performed by inexperienced people but this view was not supported in later studies (*De Sanctis et al.*, 2003).

To avoid over-diagnosis or under diagnosis or misdiagnosis of valve the World Health Organization (WHO) regurge, developed echocardiographic criteria which are widely used by practitioners for the diagnosis of subclinical RHD, and are based only on Doppler characteristics of the valvular regurgitation, defined by the association of a regurgitant jet >1 cm in length, seen in at least 2 planes, a mosaic color jet with a peak velocity >2.5 m/s, persisting throughout systole or diastole. Only the aortic and mitral valves were considered in this setting because mild pulmonary or tricuspid regurgitation is frequent and seldom rheumatic in origin without addressing any morphological criteria (WHO, 2004).

Echocardiography is important for assessing the prognosis of patients with acute rheumatic fever and subclinical valvulitis and is critical in determining the duration of antibiotic prophylaxis (*Ozkutlu et al.*, 2001).

Aim of the Study

This study aims to identify the role of echocardiography in detection of subclinical valvulitis in patients with rheumatic fever. This allows proper classification of these patients as having rheumatic heart disease, for effective prevention of recurrence of rheumatic heart attacks by effective prophylaxis, early intervention, effective treatment, and prevention of complications including cardiac damage, disability, and even death.

Chapter I

Streptococcal Pharyngitis

Definition:

Group A β hemolytic streptococci (GABHS) is the first event in the natural history of acute rheumatic fever. It should be diagnosed, differentiated from non-streptococcal pharyngitis, and treated. Streptococcus pyogenes (group A streptococcus, GAS) is a Gram-positive extracellular bacterial pathogen which colonizes the throat or skin and is responsible for a broad spectrum of diseases that range from simple pharyngitis and skin infections (impetigo, erysipelas, and cellulitis) to scarlet fever and life-threatening invasive illnesses(*Cunningham*, 2000)(*Pfoh et al.*, 2008).

Prevalence:

GAS is the most common bacterial cause of acute pharyngitis and it is responsible for 5%–15% of sore throat visits in adults and 20%–30% in children with an estimated 7.3 million outpatient physician visits each year among children in the USA (*Ebell et al.*, 2000) (*Linder et al.*, 2006). A study in Alexandria showed that the prevalence of Streptococcal tonsillopharyngitis was 17% with the highest isolation rates detected in children aged 10-15 years and in early spring (*Bassili et al.*, 2002).

Clinical Picture of Streptococcal Pharyngitis:

The signs and symptoms of GAS and non-streptococcal pharyngitis overlap so broadly that accurate diagnosis based on clinical grounds alone is usually impossible. The vast majorities of children and adults with acute pharyngitis have a viral etiology and do not need antibiotic treatment, even