Role of Musculoskeletal Ultrasonography in Evaluation of Knee Emergencies

Essay Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Eman Ahmed El-Sayed Elwediny (M.B., B. Ch.)

Faculty Of Medicine ,Ain Shams University

Supervised by

Prof. Dr. Lobna Abdel Mon'em

Professor of Radiodiagnosis

Faculty of Medicine - Ain Shams University

Dr. Hossam Moussa Sakr

Assistant Professor of Radiodiagnosis

Faculty of Medicine – Ain Shams University

Radiodiagnosis Department
Faculty of Medicine
Ain Shams University
2013

Acknowledgments

First and foremost, I would like to express my deepest gratitude and thankfulness to Allah for giving me the will and strength to fulfill this work.

My sincere gratitude and unlimited thanks are addressed to Dr. Lobna Abd Almone'm Habeeb, professor of Radiodiagnosis, Ain Shams University for her constant advice, encouragement and sincere remarks. It has been a great honor and extreme pleasure for me to proceed with this work under her supervision.

Words cannot express my appreciation to Dr. Hossam Moussa Sakr, assistant professor of Radiodiagnosis Ain Shams University, for his utmost help, kind indispensable guidance, cooperative attitude and encouragement in performing this work.

Finally, I would like to thank my husband who was very supportive, cooperative, understanding and encouraging me and also all members of my family.

Eman Ahmed Alwediny

Contents

	Page
Introduction	1
Gross and ultrasonographic anatomy of the knee joint	6
The pathology of knee joint emergencies	49
The ultrasound physics and technical consideration	65
The ultrasonographic appearance of knee joint emergencies	90
Summary	126
References	131
Arabic summary	

List of Abbreviations

ACL	Anterior cruciate ligament
EFOV	Extended field-of-view imaging
HRUS	High resolution ultrasonography
LCL	Lateral collateral ligament
LHG	Lateral head of gastrocnemius
LM	Lateral meniscal
MCL	Medial collateral ligament
MRI	Magnetic resonance imaging
PCL	Posterior cruciate ligament
PRF	Pulse repetition frequency
PT	Patellar tendon
QT	Quadriceps tendon
QTR	Quadriceps tendon rupture
SMCL	Superficial medial collateral ligament
THI	Tissue harmonic imaging
US	Ultrasound
3DUS	Three-dimensional ultrasound

List of figures

Fig.		Page
1	knee capsule and synovium	7
2	Knee joint. Articular anatomy	10
3	menisci and attachments of ligaments	16
4	illustrations of the ligaments, menisci and bursae of the knee	18
5	Right knee-joint. Anterior view	20
6	Sagittal section of right knee-joint	22
7	Capsule of right knee-joint (distended). Lateral aspect	25
8	Illustration of bursa about the knee	27
9	Quadriceps tendon and suprapatellar recess	30
10	Patellar tendon	30
11	Medial joint recess.	31
12	Lateral joint recess	32
13	Patella.	32
14	Trochlear cartilage of the femur	33
15	Medial collateral ligament and medial meniscus (body)	35
16	Medial meniscus (anterior horn)	36
17	Pes anserinus.	36
18	Iliotibial tract	38
19	Lateral collateral ligament	39
20	Biceps femoris	39

21	Common peroneal nerve	40
22	Common peroneal nerve and biceps	40
	femoris	
23	Popliteus tendon and popliteofibular	41
2.4	ligament	42
24	Gastrocnemius and soleus	43
25	Medial head of the gastrocnemius and semimembranosus	44
26	Medial meniscus (posterior horn).	45
27	Posterior cruciate ligament	46
28	Lateral meniscus (posterior horn)	47
29	Anterior cruciate ligament.	48
30	Types and derivatives of meniscal tears	52
31	Example of tissue harmonic imaging	74
32	Example of extended-field-of-view	76
33	Example of acoustic shadowing	80
34	Example of an enhancement artifact	82
35	Example Comet-tail artifact	82
36	Example of Refraction artifact	84
37	Example of a reverberation artifact	85
38	Example of Anisotropic Reflectors	87
39	Example of Speed of Sound Artifact	87
40	Example of Beam Width Artifact	89
41	Horizontal medial meniscal tear	91
42	horizontal meniscal tear and the cyst is	92
	a meniscal cyst	
43	meniscal cyst connected to a meniscal	92
	tear	
44	horizontal tear of the meniscus	93

45	meniscal tear	93
46	Tear of the posterior horn of the medial	94
	meniscus	
47	Lateral meniscal tear in the posterior	95
	horn	
48	Tear in the posterior horn of the lateral	95
	meniscus	
49	Hematoma at origin of ACL	98
50	Torn ACL	98
51	Torn ACL	99
52	Torn PCL	101
53	Complex tear of PCL	101
54	Torn PCL	102
55	focal thickening at the upper half of the	102
	PCL (focal interstitial tear)	
56	Acute injury of the posterior cruciate	103
57	ligament	105
57	Intrasubstance tear of the medial collateral ligament	105
58	partial tear of the medial collateral	105
	ligament	
59	Partial-thickness tears of the medial	106
	collateral ligament	
60	Medial collateral ligament injury	107
61	Partial tear of the lateral collateral	109
(2	ligament	100
62	Lateral collateral ligament injury	109
63	Partial tear of the quadriceps tendon	112
64	quadriceps tendon rupture with a large	112
	defect in the rectus femoris tendon	445
65	Complete tears of the quadriceps tendon	113
66	Tear of quadriceps tendon with	113
	retracted tendon ends	

67	Rupture of the quadriceps tendon with	114
07		114
	loss of linear fibers of the tendon	
68	Partial-thickness tear of the quadriceps	115
	tendon	
69	Complete tear of the quadriceps tendon	116
70	Complete tear of the quadriceps tendon	116
71	complete patellar tendon rupture	118
72	tear of the patellar tendon	118
73	Partial thickness tears of the patellar	119
	tendon	
74	Complete patellar tendon tear	120
75	Ruptured Baker's cyst	122
76	Ruptured Baker's cysts	123
77	ruptured Baker cyst with free fluid	123
	spreading at the middle third of the calf	
	into the fatty tissue planes	
78	Complicated Baker cyst (recent	124
	rupture)	
79	collapsed baker cyst after its rupture	124
80	collapsed baker cyst after its rupture	125
	with the fluid content of the ruptured	
	cyst noted within the calf region	
	cyst noted within the can region	

CHAPTER I

THE INTRODUCTION

The knee is a complex joint with many components, making it vulnerable to a variety of injuries.

The knee is vulnerable to a wide variety of acute and chronic injuries sustained during sporting activity. Acute knee injuries most frequently involve the bone, menisci, articular cartilage and ligaments. They are particularly common in sports involving twisting movements and sudden changes of direction (*Melanie et al.*, 2010).

A variety of disorders involving tendons, vessels, nerves, joints and para articular structures of the knee can be accurately assessed with US (Grobbelaar and Bouffard 2000) and (Friedman et al., 2001).

There are many Knee joint emergencies like: Medial Collateral Ligament injuries which are the most commonly damaged ligamentous stabilizer of the human knee (*Heitmann et al., 2013*). And The Lateral Collateral Ligament is one of the more commonly injured ligaments in the knee (*Orthogate, 2006*). Because of its location, it is common to injure in conjunction with other ligaments in the knee.

Also meniscal injury, especially medial one, is common not only in elite athletes but also in the general population (*Grifka et al.*, 1994).

Rupture of a Baker's cyst which results in a swollen, painful leg that is clinically indistinguishable from acute deep venous thrombosis (Osamu Sato et al., 2001).

Though uncommon when all types of injuries of the knee joint are considered, injury to the quadriceps tendon is the second most common injury to the extensor mechanism after patellar fracture (*Nance and Kaye*, 1982).

In recent years some reports have focused on the ability of US to assess the anterior (*Fuchs and Chylarecki*, 2002) and posterior (*Miller*, 2002) cruciate ligaments. US detection of a localized fluid collection at the posterocranial portion of the anterior cruciate ligament seems to correlate with acute tears (*Ptasznik et al.*, 1995).

Furthermore, US can give an indirect assessment of the integrity of the cruciate ligaments by estimating the degree of tibial subluxation during stress maneuvers (Gebhard et al., 1999).

Ultrasound can be used to identify hemarthrosis (generally anechoic or hypo-echoic collections) and to

evaluate the synovium for signs of inflammation. Inflamed synovium demonstrates increased flow with colour and power Doppler imaging and it may be seen to be thickened nodular (Zukotynski et al., 2007). Ultrasound can hemarthrosis distinguish between and synovial helps determine when factor hypertrophy, which replacement therapy is necessary.

Disorders of the knee are responsible for a major source of referrals to the musculoskeletal radiologists. Most cases have suspected abnormalities within the joint either following an acute injury or a more insidious development of symptoms (*Ostlere*, 2003).

The recent exponential improvement in medical ultrasound technology has revolutionized the field of musculoskeletal imaging. Cutting-edge technology using state-of-the-art machines and high-frequency transducers have placed it ahead of magnetic resonance imaging (MRI) in many aspects of musculoskeletal imaging (Jacobson, 2005) and (Sofka, 2004).

What is particularly surprising to some is that it has far better resolution than MRI allowing for detailed evaluation of soft tissues. The multiplanar and dynamic capabilities of ultrasound along with its lack of ionizing radiation now make it the first-line imaging modality for many soft tissue pathologies. It offers a low cost, non-invasive method of evaluating orthopedic trauma patients, particularly for patients with metallic hardware in situ, which can degrade computed tomography and magnetic resonance images (Weiss et al., 2005).

But perhaps one of its most important diagnostic advantages over other techniques is its real-time imaging capability, allowing for dynamic evaluation. The real-time imaging feature of sonography is of particular interest because some disorders of muscles, tendons, nerves, and joints are better -or in some cases only- seen dynamically, that is during motion of the extremity, muscle contraction, probe compression, or position change of the patient (*Khoury et al, 2007*).

When performing musculoskeletal sonography, the proper equipment is essential to facilitate optimal image quality and diagnostic examinations. In general, the structures examined will be superficial; therefore, high frequency (7-12 MHz) linear array transducers are usually the most appropriate choice. The high resolution attainable allows detailed anatomic depiction of pertinent structures.

Proper positioning of the patient is of paramount importance in obtaining high quality studies. Different sonographic techniques have been described, with the universal goal of optimizing the visualization of structures of interest (*Lin et al, 2000*).

CHAPTER II

Anatomy Of The Knee Joint

Gross anatomy of the knee joint:

The knee, one of the largest and most complicated joints in the body, is a synovium-lined, diarthrodial articulation consisting of two hinge-type joints between the femoral condyles and the medial and lateral tibial plateaus, and a gliding-type joint between the patella and the trochlear groove of the anterior distal femur (*fig.1*). The tibiofibular articulation, although often considered a part of the knee, is in fact not a portion of the true knee joint. The knee is protected anteriorly and posteriorly by muscles with special ligamentous attachments to the capsule (*Frick et al.*, 2007).

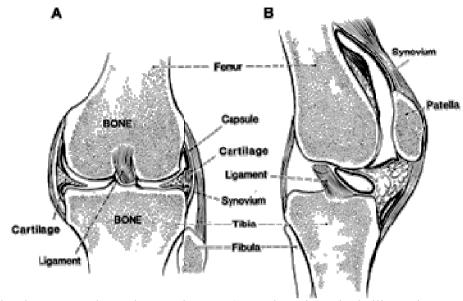


Fig.1. The knee capsule and synovium. Coronal and sagittal illustrations demonstrate the relationship between the knee capsule, the synovium and the supporting structures of the knee (*Quoted from Frick et al., 2007*).

Bone and articular surfaces:

The articular surfaces of both the femoral and tibial condyles are covered with hyaline cartilage. The femoral condyles are oval anteriorly and rounded posteriorly to provide increased stability in extension and increased motion and rotation in flexion. The medial femoral condyle is larger and important in load transmission across the knee (Clemente, 1985).

Medial and lateral tibial condyles, from the expanded articular portion of the tibia are separated by the