

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPT.

INVESTIGATION OF THE ELECTRICAL AND PHYSICAL CHARACTERISTIC FOR <u>E</u>THYLENE <u>P</u>ROPYLENE <u>D</u>IENE <u>M</u>ONOMER (EPDM) CABLE TERMINATION

A Thesis

Submitted in partial fulfillment for the requirement of the Degree of Master of Science in Electrical Engineering

By **Ahmed Ragab Elsayed Mohamed**

B.Sc. Electrical Engineering, Zagazig University, 2005

Supervised By

Prof. Dr. Soliman El-Debeiky

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof . Dr. Salem Mahmoud Elkhodary

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof . Dr. Loai Saad El- din Nasrat

Electrical Power & Machines Dept. Faculty of Engineering Aswan University

> CAIRO-EGYPT 2014

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES

INVESTIGATION OF THE ELECTRICAL AND PHYSICAL CHARACTERISTIC FOR <u>E</u>THYLENE <u>P</u>ROPYLENE <u>D</u>IENE MONOMER (EPDM) CABLE TERMINATION

A Thesis

Submitted in partial fulfillment of the Requirements for the Degree of Master of Science in Electrical engineering

By **Ahmed Ragab Elsayed Mohamed**

B.Sc .of Electrical Engineering , Zagazig University, 2005

Supervised By

Prof . Dr. Soliman El-Debeiky

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof. Dr. Salem Mahmoud Elkhodary

Electrical Power & Machines Dept.
Faculty of Engineering
Ain Shams University

Prof. Dr. Loai Saad El-din Nasrat

Electrical Power & Machines Dept. Faculty of Engineering Aswan University

> CAIRO-EGYPT 2014

Agrement Report

Student Name: Ahmed Ragab Elsayed Mohamed

Thesis Title: Investigation of the electrical and physical

characteristic for Ethylene Propylene Diene Monomer

(EPDM) cable termination

Degree: Master of Science in Electrical engineering

Supervised By:

Prof . Dr. Soliman El-Debeiky Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Prof . Dr. Salem Mahmoud Elkhodary Electrical Power & Machines Dept

Faculty of Engineering Ain Shams University

Prof . Dr. Loai Saad El- din Nasrat Electrical Power & Machines Dept.

Faculty of Engineering Aswan University

Examiners Committee:

Prof . Dr. Hanafi Mahmoud Ismail Electrical Power & Machines Dept

Faculty of Engineering Ain Shams University

Prof . Dr. Nagat Mohamed Kamel Electrical Power & Machines Dept.

Faculty of Engineering Benha University

Prof . Dr. Salem Mahmoud Elkhodary Electrical Power & Machines Dept

Faculty of Engineering Ain Shams University

Prof . Dr. Loai Saad El- din Nasrat Electrical Power & Machines Dept.

Faculty of Engineering Aswan University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master in Electrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for another degree or a qualification.

ACKNOWLEDGEMENT

I have the great honor to express my deepest gratitude and sincere thanks to **Prof. Dr. Soliman El-Debeiky** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for his kind supervision, guidance and continuous encouragement and for his helpful and fruitful discussions in the preparation of this thesis.

I wish to express my deepest gratitude and sincere appreciation to **Prof. Dr. Salem Mahmoud ElKhodary** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for every good help and guidance during carrying this thesis.

Further, the great honor and my deepest gratitude and sincere thanks to **Prof. Dr. Loai Saad El-din Nasrat,** at Electrical power Dept, Faculty of Engineering, Aswan University, for his guidance and unfailing discussions and for every good help until the thesis has been developed.

Ahmed Ragab

Cairo - 2014

ABSTRACT

Polymeric cable terminations are widely used for a variety of electrical applications and are being produced and used in the Arab Republic of Egypt. Polymeric cable terminations find increasing applications in distribution networks. The electrical properties of polymers are strongly influenced by environmentally induced degradation mechanisms.

The present work shows an experimental and analytical investigation to check the suitability of the Ethylene Propylene Diene Monomer (EPDM) cable terminations for use in medium voltage and high voltage networks. This investigation aimed to improve the performance of the EPDM cable terminations that are used in the Egyptian networks in the environmental conditions of the Arab Republic of Egypt.

The effects of salinity caused by the exposure of EPDM terminations near coastal areas and the effects of sand storms were studied. The effect of ultraviolet radiation on EPDM terminations is also investigated. Dry and wet flashover tests were carried out on the EPDM terminations under the effects of the ultraviolet radiation.

Finally, the EPDM terminations were tested after being coated by Silicon grease under the above environmental conditions in order to improve their performance and protect them against weathering conditions.

LIST OF ABBRIVIATIONS

HV High voltage UV Ultraviolet

MV Medium Voltage

IEC International Electrotechnical Commission

Cu Copper Al Aluminum

EPDM Ethylene Propylene Diene Monomer

EPM Ethylene Propylene Monomer

SiR Silicon Rubber

kV Kilovolt

HDPE High Density Polyethylene

PE Polyethylene

XLPE Cross Linked Polyethylene

DMTA Dynamic Mechanical thermo-analysis

DMA Dynamic Mechanical analysis
TGA Thermogravimetric analysis

CB carbon Black

EPR Ethylene Propylene Rubber

NR Natural Rubber

XPS X-Ray Photoelectron spectroscopy

ENB Ethylidene-Norbornene

UVA Ultraviolet Grade A PVC Polyvinyl Chloride

TPE Thermoplast Elastomer

WAXD Wide Angle X-ray diffraction
DSC Diffrential Scanning Calorimetry

TG-DTA Thermogravimetric-Diffrential Thermal Analysis

SEM Scanning Electron microscopy

UVB Ultraviolet Grade B EAP Early Aging Period

μS/cm Micro Siemens per centimetermS/cm Mille Siemens per centimeter

UVC Ultraviolet Grade C
UK United Kingdom
° C Degree Celsius

ESDD Equivalent Salt Deposite Density

NaCl Sodium chloride

TDS Total Dissolved Solids

CONTENTS

	Page
STATEMENT	A
ACKNOWLEDGEMENT	В
ABSTRACT	C
LIST OF ABBREVIATIONS	D
CONTENTS	F
LIST OF TABLES	J
LIST OF FIGURES	L
CHAPTER 1: INTRODUCTION	
1-1 Preface	1
1-2 Problems of contaminations	1
1-3 Insulating material	2
1-3-1 Porcelain and glass	2
1-3-2 Polymeric insulators	2
1-4 Wide spread use of polymers	3
1-5 Thesis Content	5
CHAPTER 2: APPLICATIONS OF POLYMERS ON CABLES AND TECHNIQUES OF CABLES TERMINATIONS	
2-1General	7
2-2 Medium voltage power cables constructions	7
2-2-1 Conductor	8
2-2-2 Conductor screen	9
2-2-3 Insulation	9
2-2-4 Insulation screen	11

2-2-5 Copper screen	11
2-2-6 Sheathing	12
2-3 Power cables terminations	12
2-3-1 Definition of termination according to IEC	12
2-3-2 Preface	12
2-3-3 Types of power cables terminations	14
2-3-4 Premolded cables terminations	15
2-3-4-1Creepage distance	16
2-3-4-2 Stress control	17
2-3-5 Methods for making stress relief	19
2-4 Pollution and Contamination	21
2-4-1Types of pollution	22
2-4-1-1 Industrial Pollution.	22
2-4-1-2 Marine Pollution.	23
2-4-1-3 Desert pollution	25
2-4-2 The levels of pollution severity	27
CHAPTER 3: REVIEW OF LITERATURE	
RELATED TO THE SUBJECT	
3-1 Preface	28
3-2 General Characteristics of Polymeric Materials	28
3-3 Overview of Different Aging Methods	35
3-4 Polymeric Performance Under Different Pollution Conditions	37

CHAPTER 4: INVESTIGATED ELECTRICAL SETUP,
TEST PROCEDURES AND TEST SPECIMENS
PREPARATION
4-1 Preface

4-1 Preface	49
4-2 Preparation of specimens	49
4-3 How to simulate the coastal conditions?	49
4-4 How to simulate ultraviolet radiation?	50
4-5 How to simulate the sand storms?	52
4-5-1Results of the surface roughness and the tested samples measurements	55
4-6 The stress relief	55
4-7 Preparation of cable terminations	56
4-8 Electrical tests	57
4-9 Test procedures	57
4-10 Testing conditions	58
4-11 Thermogravimetric Analysis Test (TGA)	58
4-11-1 Procedure	59
CHAPTER 5: STUDY OF THE FLASHOVER	
VOLTAGE CHARACTERISTICS FOR EPDM	
TERMINATIONS	
5-1 Preface	61
5-2 Flashover voltage tests	61
5-3 Methods of measurement of the flashover voltage	62
5-4 Comparison between virgin samples under dry and wet conditions	62
5-5 Effects of ultraviolet radiation on the EPDM cable terminations	63
5-6 Effect of salinity on EPDM cable terminations	65
5-7 Effect of coating EPDM cable terminations with silicon	67

grease on flashover voltage	
5-8 Effect of salinity combined with simulated UV radiation	69
5-9 Effects of Exposure to Artificial sand storms	75
5-9-1 Effects of salinity on cable terminations which are	7.
subjected to artificial sand storms.	76
5-10 Flashover of cable terminations	82
5-11 Thermal Stability Tests	85
5-11-1 Thermogravimetric Analysis:	85
5-11-2 TGA of EPDM Sample.	85
5-11-3 Content of material	86
5-12 Analysis of Results And Discussions.	87
CHAPTER 6: GENERAL CONCLUSIONS AND	
SUGGESTIONS FOR FUTURE WORKS	
6-1 Preface	90
6-2 Conclusions	90
6-3 Suggestions for Future Work	93
REFERENCES	94
PUBLISHED PAPER AND APPENDICES	10

LIST OF TABLES

Table No.	Title	Page
2-1	Levels of pollutions	27
4-1	Relation between solution type and its corresponding conductivity	50
4-2	Types of UV light and its wave lengths	51
4-3	Values obtained for Surface Roughness	55
5-1	Values of flashover voltages (kV) of cable termination subjected different simulated UV radiations	63
5-2	Values of flashover voltages (kV) of cable termination subjected different water conductivities	65
5-3	Values of flashover voltages (kV) of cable termination related to virgin case, wet case and sea water case	66
5-4	Comparison between flashover voltage (kV) for uncoated and coated cable terminations	68
5-5	Values of flashover voltages (kV) of cable termination subjected to virgin case, wet case and sea water case at 2000 hours UV	72
5-6	Values of flashover voltages (kV) of cable termination subjected to virgin case, wet case and sea water case at 3000 hours UV	73

Table No.	Title	Page
5-7	Values of flashover voltages (kV) of cable termination subjected to virgin case, wet case and sea water case at 5500 hours UV	73
5-8	Comparison between the effects of different doses of UV radiation on the flashover voltages (kV) versus water conductivity (mS/cm)	74
5-9	Flashover voltage to the cable termination with different sand storm periods	76
5-10	Comparison between different exposure duration of artificial sand storm on the flashover voltage (kV) versus water conductivity (mS/cm)	81
5-11	Record the percent mass loss for organics, carbon black, and ash	87

LIST OF FIGURES

Figure No.	Title	Page
2-1	The main constructions of M.V power cables	8
2-2	Outdoor termination connected to overhead line	13
2-3	Constructional Details of a Typical Polymeric Cable termination	15
2-4	Insulator creepage distance path	16
2-5	longitudinal stresses	17
2-6	Radial stresses	18
2-7	Electrical field concentration	19
2-8	The effect of the stress cone at the power cable terminations	20
2-9	The effect of the Heat shrinkable stress control tube at the cable termination.	20
2-10	The effect of the Heat shrinkable stress control tube as additional capacitors	21
4-1	WTW-LF330 to measure the conductivity of water	50
4-2	Light spectrum	51
4-3	Photograph of UV Device	52
4-4	Sand storm simulation device	53