

USING BIOREACTOR MEDIA IN DEVELOPING WASTE STABILIZATION PONDS

A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by Eng. HEBA SAEID ISMAIL ELDEWY

B.Sc. in Civil Engineering, June 2005 Faculty of Engineering, Ain Shams University

Supervisors Prof. Dr. MOHAMED EL HOSSIENY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. ENAS SAYED AHMED WAHB,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. NANY ALY HASSAN NASR,

Associate professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

USING BIOREACTOR MEDIA IN DEVELOPING WASTE STABILIZATION PONDS

A Thesis For
The M.Sc. Degree In Civil Engineering
(SANITARY ENGINEERING)

by

ENG. HEBA SAEID ISMAIL ELDEWY

B.Sc. in Civil Engineering, June 2005 Faculty of Engineering, Ain Shams University

THESIS APPROVAL EXAMINERS COMMITTEE SIGNATURE

Dr. Mohamed El Sayed Aly Basiouny	
Professor of Sanitary Engineering & Dean of	
Benha Faculty of Engineering, Benha University	
Dr. Tarek Ismaiel Sabry	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	

Date: - ---/2014

DEDICATION

To the persons who helped and supported me and encouraged me during this long journey of hard work;

To my family,

TO THE SOUL OF MY FATHER & MY MOTHER

MY DEAR SISTER,

Also, I wish to dedicate my thesis

TO

My Dear Professor PROF.DR.MOHAMED EL HOSSEINY EL NADI

For his encouragement and help to complete this work.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, October 2008 to April 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date:- ---/-- /2014

Signature:- -----

Name:- Heba Saeid Ismail El Dewy

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr. Mohamed El Hosseiny Abdel Rahman EL Nadi**, Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for suggesting the problem, help, encourage, co-operation sponsoring and patient advising during preparation of this work.

Also, great thanks to **Dr. Enas Sayed Ahmed Wahb**, Associate Professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and co-operation during the preparation of the study.

And thanks to **Dr. Nany Aly Hassan Nasr,** Associate professor of sanitary and Environmental Engineering, Ain Shams University, for her help, and co-operation during the preparation of the study.

Also, Iam very grateful to the sanitary engineering staff and the laboratory personnel Faculty of Engineering, Ain Shams University for their encouragement and support during thesis preparation.

ABSTRACT

Name :- . HEBA SAEID ISMAIL ELDEWY

Title : - "USING BIOREACTOR MEDIA IN DEVELOPING WASTE STABILIZATION PONDS".

Faculty: - Faculty of Engineering, Ain Shams University. **Specialty**: - Civil Eng., Public Works, Sanitary Engineering. **Summary**:-

Waste stabilization pond technology is considered the most economic wastewater treatment technology for the removal of pathogenic microorganisms. The treatment is achieved through natural disinfection mechanisms depending on Sun, algae and temperature.

The study was conducted in the existing Waqued Waste stabilization pond in Behira governorate. The pond was monitored for five weeks. Then bioreactor media was applied to the inlet of both facultative and maturation pond, the system performance was monitored and evaluated on a weekly basis for six months. The study revealed that although the pond overloading and constant area for existing case, effluents are within desirable range, indicating over estimation of pond dimensions. By applying different on the existing case it was found they do not suit Egyptian conditions.

The proposed modification of bioreactor media application at inlet of facultative and maturation enhanced the pond performance by raising removal efficiencies of TSS by 2.6 % (to be 92.55%), BOD by 8.56% (to be 92.05%) in facultative pond . Also in maturation pond TSS was raised by 34.46 %,(to be 84.46%) and BOD by20.17 % (to be 64.67%).In the same time the applied media reduced a part of the pond equivalent to 2.14 % of facultative pond area and 3.19 % of maturation pond area.

The treated effluent TSS, BOD and fecal coliform were found to be in permissible range according to regulations and standards therefore can be disposed in natural streams or used for irrigation purposes.

Supervisors:-

Prof. Dr. MOHAMED EL HOSSIENY EL NADI, Dr. ENAS SAYED WAHB, Dr. NANY ALY HASSAN NASR,

Key Words:-

Wastewater Treatment, Biological Treatment, Stabilization Ponds, Bio reactor Media.

TABLE OF CONTENT

	Page
COVER	i
THESIS APPROVAL	ii
DEDICATION	iii
STATEMENT	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	
LIST OF TABLES	X:
	xi
CHAPTER I: INTRODUCTION	
1.1 GENERAL	
1.2 STUDY OBJECTIVE1.3 SCOPE OF WORK	1
1.4 THESIS ORGANIZATION	1
1.4 THESIS ORGANIZATION	2
	3
CHAPTED H. I ITEDATHDE DEVIEW	
CHAPTER II: LITERATURE REVIEW 2.1 INTRODUCTION	4
2.2 STABILIZATION PONDS	4
2.2.1 STABILIZATION FONDS DESCRIPTION	5
2.2.2 PERFORMANCE OF STABILIZATION PONDS	6
2.2.3 TYPES OF STABILIZATION PONDS AND THEIR SPECIFIC	7
USES THE SOL STABLE INTO TONDS AND THEM SIZE HIE	6
2.2.3.1 ANEROBIC PONDS	7
2.2.3.2 FACULTATIVE PONDS	9
2.2.3.3 MATURATION PONDS	11
2.2.4 NUTRIENT REMOVAL IN STABILIZATION PONDS	12
2.3 WASTE STABILIZATION PONDS DESIGN	13
2.3.1 FACTORS AND DESIGN EQUATIONS	14
2.3.1.1 TEMPERATURE	14
2.3.1.2 NET EVAPORATION	14
2.3.1.3 WATER FLOWS	15
2.3.1.4 BOD CONCENTRATION	15
2.3.1.5 FECAL COLIFORM AND HELMINTH EGG	16
2.3.2 DESIGN EQUATIONS OF ANEROBIC PONDS	
2.3.3 DESIGN EQUATIONS OF FACULTATIVE PONDS	16
2.3.3.1 MARAIS AND SHAW EQUATION	17
2.3.3.2 MARA MODIFICATION EQUATION	19
2.3.3.3. WHENER & WELHELM EQUATION	19
2.3.3.4 PLUG FLOW MODEL	19

2.3.3.5 THIRUMURITHI EQUATION	20
2.3.3.6 POLPARSERT &BAHATTARI EQUATION	21
2.3.3.7 ARCEIVALA EQUATION	22
2.3.3.8 MC GARRY & PESCOD	24
2.3.3.9 MARA MODIF. ON MC GARRY & PESCOD EQ.	24
2.3.3.10 EQ. OF EL NADI & ABD ELAZEEM	25
2.3.3.11 MODIF. OF EL NADI & ABD ELAZEEM	25
2.3.4 DESIGN EQ. OF MATURATION PONDS	26
2.3.4.1 DESIGN OF MAT. PONDS FOR FECAL COLIFORM	26
REMOVAL	
2.3.4.2 MINIMUM RETENTION TIMES	26
2.3.4.3 DESIGN OF WSP FOR NUTRIENT REMOVAL	29
2.4 MODIFICATIONS OF STABILIZATION PONDS	30
2.4.1 APPLICATION OF MECHA NICAL AERATION	31
2.4.2 ROCK FILTER USED BY MARA & PEARSON IN 1980	31
2.4.3 STABILIZATION PONDS & ATTACHED GROWTH MEDIA	31
2.4.4 ADVANCED INTEGRATED FACULTATIVE PONDS(AIFPS)	34
2.4.5 HIGH RATE ALGAL PONDS	36
2.4.6 ADVANCED INTEGRATED PONDS SYSTEM	37
2.4.7 ADVANCED POND SYSTEMS	38
2.4.8 SHEAFFER MODULAR RECLAMATION & REUSE SYSTEM	39
2.5 BIOLOGICAL FILTRATION MEDIA	40
2.5.1 QUALITY OF MEDIA	41
2.5.2 DEPTH OF MEDIA	42
2.5.3 SIZE &GRADING OF MEDIA	43
2.6 APPLICATION OF BIOMEDIA IN WSP	43
2.6.1 TRICKLING FILTERS	43
2.6.1.1 DESCRIPTION	44
2.6.1.2 DESIGN CRITERIA OF TRICKLING FILTERS	44
2.6.1.3 ALTERNATIVE DESIGN EQ.	45
	47

CHAPTER III: MATERIALS & METHODS	
3.1 STUDY LOCATION	49
3.1.1 PLANT DATA	49
3.1.2 PLANT DESCRIPTION	49
3.2 WORK CONCEPT	50
3.3 CRITERIA OF MEDIA	50
3.4 WORK PROGRAM	50
3.4.1 CHOICE OF WORK INTERVALS	52
3.4.2 OPERATION PROGRAM	52
3.5 SAMPLING	53
3.5.1 FREQUENCY OF SAMPLING	53
3.5.2 LOCATIONS OF SAMPLING	53
3.6 ANALYSIS AND MEASURMENTS	53
3.6.1 BOD ₅	37
3.6.2 TSS	54
3.6.3 FECAL COLIFORM	54
CHAPTER IV: RESULTS	
4.1 GENERAL	55
4.2 FIELD RESULTS	57
4.2.1 RESULTS BEFORE ADDITION OF MEDIA	58
4.2.1.1 INFLUENT OF FACULTATIVE PONDS	59
4.2.1.2 EFFLUENT OF FACULTATIVE PONDS	59
4.2.1.3 INFLUENT OF MATURATION PONDS	59
4.2.1.4 EFFLUENT OF MATURATION PONDS	59
4.2.2 RESULTS AFTER ADDITION OF MEDIA	61
4.2.2.1 INFLUENT RESULTS OF FACULTATIVE POND	61
4.2.2.2 RESULTS AFTER APPLICATION OF MEDIA IN FAC. POND	<i>(</i> 2
4.2.2.3 EFFLUENT RESULTS OF FACULTATIVE POND	63
4.2.2.4 INFLUENT RESULTS OF MATURATION POND	63
4.2.2.5 RESULTS AFTER MEDIA APPLICATION IN MAT. POND 4.2.2.6 EFFLUENT RESULTS OF MATURATION POND	64
	65
	67

CHAPTER V: DISSCUSION	
5.1 INTRODUCTION	68
5.2 DISCUSSION OF PHASE [I] RESULTS	69
5.2.1 RESULTS FOR FACULTATIVE POND	73
5.2.2 RESULTS FOR MATURATION POND	73
5.2.3 EVALUATION OF SYSTEM PERFORMANCE	74
5.2.3.1 EVALUATION OF FAC. POND IN CASE OF FLOW	74
5200M3/DAY	76
5.2.3.2EVALUATION OF MAT. POND IN CASE OF FLOW	76
5200M3/DY	78
5.3 DISCUSSION OF PHASE [II] RESULTS	79
5.3.1 DISCUSSION OF MODIFIED FAC. POND	79
5.3.2 DISCUSSION OF MODIFIED MAT. POND	84
5.4 MEDIA EFFECT ON PONDS	89
5.4.1 MEDIA EFFECT ON FAC. POND TSS REMOVAL EFFICIENCY	90
5.4.2 MEDIA EFFECT ON. POND BOD REMOVAL EFFICIENCY	
5.4.3 MEDIA EFFECT IN MAT. POND	92
5.4.3.1 MEDIA EFFECT ON MAT. POND TSS REMOVAL	
EFFICIENCY	94
5.4.3.2 MEDIA EFFECT ON MAT. POND BOD REMOVAL	
EFFICIENCY	96
5.4.3.3 MEDIA EFFECT ON MAT. POND FECAL COLIFORM	
REMOVAL EFFICIENCY	
CHAPTER VI: CONCLUSION	
6.1 CONCLUSION	100
6.2 RECOMMENDATION	101
6.3 FURTHER WORKS	101
REFERENCES	102

LIST OF FIGURES

Figure	Page
CHAPTER II: LITERATURE REVIEW	
Figure (2/1) WSP system at Dandora, Nairobi- Kenya	5
Figure (2/2) Rock filter installed in the corner of a pond at Veneta, Oregon,	
USA.	33
Figure (2/3)Schematic flow diagram of the pilot-scale pond systems	34
Figure (2/4) Integrated (Advanced) Facultative Pond	36
Figure (2/5) A HRAP in New Zealand	37
Figure (2/6) AIWSP system (adapted from NWA website)	39
Figure (2/7) SMRRS (Sheaffer International LTD)	40
Figure (2/8) Sectional Prespective view of a circular Bio-filter	45
CHAPTER III: MATERIALS & METHODS	
Figure (3/1) Photo of Waqued Stabilization Pond plant	50
Figure (3/2) Location of media in Waqued Stabilization Pond plant	51
Figure (3/3) Section in facultative pond after applying bioreactor media	51
Figure (3/4) Section in maturation pond after applying bioreactor media	52
Figure (3/5) BOD5 measuring bottles	54
Figure (3/6) T.S.S measuring suction flask& filtration apparatus	55
Figure (3/7) Electric Balance	56
Figure (3/8) Muffle furnace	57
Figure (3/9) Electric Oven	57
Figure (3/10) Microscope	57
•	58
CHAPTER (IV) RESULTS	~ 0
Figure (4/1) Location of the Waqued Stabilization Pond	59
Figure (4/2) BOD in Facultative pond in the original case	61
Figure (4/3) TSS in Facultative pond in the original case	62
Figure (4/4) BOD in Maturation Pond in the original case	63
Figure (4/5) TSS in Maturation Pond in the original case	63
Figure (4/6) fecal coliform in Maturation Pond in the original case	64
Figure (4/7) TSS in Facultative Pond after applying media	68
Figure (4/8) BOD in Facultative pond after applying media	68 72
Figure (4/9) TSS in Maturation Pond after applying media	72 72
Figure (4/10) BOD in Maturation Pond after applying media	72 72
Figure (4/11) Fecal coli form in Maturation Pond after applying media	73
CHAPTER (V) DISCUSSION	92
Figure (5/1) TSS removal efficiencies in Fac. & Mat.	92 94

Figure (5/2) BOD removal efficiencies in Fac. & Mat.	96
Figure (5/3) TSS removal efficiencies in Fac. & Mat	98
Figure (5/4)BOD removal efficiencies in Fac. & Mat	100
Figure (5/5) Fecal coliform removal efficiencies before & after	

LIST OF TABLES

Table	Page
CHAPTER II: LITERATURE REVIEW	
Table (2/1)Permissible volumetric loadings in anerobic ponds	17
Table (2/2) Variation of the plug flow reaction rate (K_{BODP20})	22
CHAPTER IV: RESULTS	
Table (4/1) Average weekly Influent BOD of Facultative Ponds	60
Table (4/2) Average weekly results of facultative ponds effluent	61
Table (4/3) Average weekly results of maturation ponds influent	62
Table (4/4) Average weekly results of maturation ponds effluent	63
Table (4/5) Facultative pond influent after application of media	65
Table (4/6) BOD, TSS in facultative pond after media	66
Table (4/7) BOD and TSS for Facultative Pond Effluent.	67
Table (4/8) Influent results for maturation ponds	69
Table (4/9) Effluent of maturation pond after media	70
Table (4/10) Effluent of Maturation Pond	71
CHAPTER V: DISSCUSION	
Table (5/1) BOD& TSS removal efficiencies in facultative pond	75
Table (5/2) Influent &effluent BOD &TSS in maturation pond	76
Table (5/3) Influent &effluent fecal coliform in maturation pond	76
Table (5/4) TSS monthly values of facultative pond	81
Table (5/5) BOD monthly values after applying media	83
Table (5/6) Maturation pond TSS average monthly after applying media	85
Table (5/7) Maturation pond BOD average monthly after applying media	87
Table (5/8) Bacterial count average monthly after applying media	89

CHAPTER I INTRODUCTION

1.1 BACKGROUND

Wastewater treatment has been always a must which has no any alternative. Since at last wastewater is disposed to water down streams or reused. This highlights the importance of finding a high performance system as waste stabilization ponds.

Waste stabilization pond technology is considered the most economic wastewater treatment technology for the removal of pathogenic microorganisms. The treatment is achieved through natural disinfection mechanisms.

It is particularly well suited for tropical and subtropical countries because the intensity of the **sunlight** and **temperature** are key factors for the efficiency of the removal processes which is very much suitable to climatic conditions in Egypt.

Depending on natural biological action it doesn't need highly trained operators for operation and maintenance. Its Big area of land uses has been a problem that limited its application in several sites.

Most of the researches work to develop the system by several procedures to decrease the area required without affecting the efficiency.

1.2 STUDY OBJECTIVES

The main target of this study is to improve both efficiency and capacity of stabilization pond by using bio reactor media at facultative and maturation pond inlets.

1.3 SCOPE OF WORK

The scope of work is divided to two main parts as follows:

1. The first is the experimental work that is done on Waqued Stabilization pond treatment plant in Behira governorate to evaluate the existing situation and do the modification by adding the bioreactor media at the inlet of both its facultative and maturation ponds.

- 2. The second is the all theoretical and official works that includes the following:
 - Data collection for the literature about the stabilization pond system and its modification around the world and also its applications in Egypt.
 - Analysis of field results and discussion of its values in the existing case before adding the biomedia and also after the addition of the bioreactor media in its unit influents.
 - Writing the thesis and review with the supervisors.

1.4 THESIS ORGANIZATION

The thesis contains six chapters in addition to References, English and Arabic summaries as follows:

1.4.1 CHAPTER I: INTRODUCTION

The chapter includes background about the Stabilization ponds, and then the study objective, scope of the study work divided into theoretical and practical work and finally the thesis organization that covers conducted work and conclusions.

1.4.2 CHAPTER II: LITERATURE REVIEW

The chapter includes introduction about stabilization ponds worldwide applications, and the factors affecting design equations used and the Egyptian equations developed recently for stabilization ponds. The chapter also mentions modifications introduced to the stabilization ponds system to improve the system performance and discuss their effluent results and cost.