Th 17 and T reg cells in type 2 diabetic nephropathy

Thesis
Submitted for partial fulfillment of Master degree in internal medicine

By Mohamed Ashraf Ibrahim

M.B. B. Ch. Cairo University **Supervised by**

Prof. Dr. Ashraf Mahmoud Okba

Professor of Allergy, Clinical Immunology and Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Abeer Abdelhamid Eissa

Lecturer of Allergy, Clinical Immunology and Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Malak Nabil Amin

Lecturer of Internal Medicine and Nephrology Theodor Bilharz Research Institute

Faculty of Medicine Ain Shams University

ACKNOWLEDGEMENT

First of all thanks to **ALLAH** for providing me with time and effort to accomplish this thesis.

I would like to express my sincerest appreciation and gratitude to Professor Dr. **Ashraf Mahmoud Okba**, for suggesting the subject, his great effort, his continuous encouragement, advice and guidance to get this work to its final form. It was a privilege to be under his supervision in this thesis.

I wish to express my deep gratitude to Dr. **Abeer Abdelhamid Eissa**, for her enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work.

A special tribute and cordial thanks are paired to Dr. **Malak Nabil Amin**, for her authentic guidance and meticulous supervision. She gave me a lot of her time, effort and experience to accomplish this work.

Last but not least, I would like to thank my parents, my family and my colleagues for all their patience, love and support which made this work possible.

My great gratitude goes to my dear wife, the one who really cares.

TABLE OF CONTENTS

	Page N.
List of tables	III
List of figures V	
List of abbreviations	IX
Introduction	1
Aim of work 3	
Chapter 1: Diabetes Mellitus	4
Chapter 2: Diabetic nephropathy 18	
Chapter 3:T cells subsets and T cell 46	
mediated immunity	
Chapter 4: T regulatory cells	63
Chapter 5: T helper 17 cells	74
Subjects and Methods 87	
Results 98	
Discussion 125	
Summary and Conclusions 138	
Recommendations	140
References 141	
Arabic summary	

LIST OF TABLES

Table A	Etiologic classification of diabetes mellitus	5
Table B	Stages of Chronic Kidney Disease	42
Table 1	Comparison of the three study groups: Gender	98
Table 2	Comparison of the three study groups: Age	99
Table 3	Comparison of the three study groups: Hypertension and IHD.	99
Table 4	Comparison of the three study groups: Duration of diabetes and Duration of hypertension	100
Table 5	Comparison of the three study groups: FBS, PPBS and HbA1c%	101
Table 6	Comparison of the three study groups: Albuminuria.	101
Table 7	Comparison of the three study groups: Total cholesterol, LDL, HDL and TAG	102
Table 8	Comparison of the three study groups: statins	102
Table 9	Comparison of the three study groups: Th 17, T reg and Th 17/T reg	103
Table 10	Correlation between Th17, Treg, and	106

	Th17/Treg ratio and lipids (Total cholesterol, LDL, HDL and TAG) in diabetic patients	
Table 11	Correlation between Th17, Treg, and Th17/Treg ratio and BUN, serum creatinine, creatinine clearance and proteinuria in diabetic patients	107
Table 12	Correlation between Th17, Treg, and Th/Treg ratio and the grade of nephropathic affection by ultrasound in the whole study population	114
Table 13	Relation between Th17, Treg, and Th/Treg ratio and hypertension in the whole study population; controls and diabetic patients	116
Table 14	Receiver-operating characteristic curve analysis for the value of Th17 in classification of diabetic patients into those with or without nephropathy	119
Table 15	Receiver-operating characteristic curve analysis for the value of Treg in classification of diabetic patients into those with or without nephropathy	121
Table 16	Receiver-operating characteristic curve analysis for the value of Th17/Treg ratio in classification of diabetic patients into those with or without nephropathy	123

LIST OF FIGURES

Figure (A)	Possible sequence of hemodynamic events leading to	21
	onset of diabetic glomerulopathy	
Figure (B)	Schematic representation of stretch mechanisms	23
Figure (C)	Mechanisms of dyslipidemia in diabetic nephropathy	33
Figure (D)	Development of t cell-mediated responses is a sequential process	49
Figure (E)	Differentiation of effector t cells	52
Figure (F)	Cytotoxic T Llmphocyte cytotoxity can be mediated	58
	By two distinct pathways	
Figure (G)	Several mechanisms mediate t reg cell function	67
Figure (H)	Functionally distinct Th17 cell subsets are induced	78
	by different cytokines	
Figure (I)	The homeostasis of Treg and Th17 cells	80
Figure (1)	Mean Th17 in the three study groups. Error bars represent 95% CI	104
Figure (2)	Mean Treg in the three study groups. Error bars represent 95% CI	104
Figure (3)	Mean Th17/ Treg ratio in the three study groups.	105
	Error bars represent 95% CI.	
Figure (4)	Scatter plot for the correlation between Th17 and	108
	BUN in controls and diabetics. Plotted lines represent	
	local regression smoothing (LOESS) trend lines	

List of Figures

Figure (5)	Scatter plot for the correlation between Th17 and serum creatinine in controls and diabetics. Plotted lines represent local regression smoothing (LOESS) trend lines.	108
Figure (6)	Scatter plot for the correlation between Th17 and creatinine clearance in diabetics. Plotted line represents local regression smoothing (LOESS) trend line	109
Figure (7)	Scatter plot for the correlation between Th17 and proteinuria in diabetics. Plotted line represents local regression smoothing (LOESS) trend line	109
Figure (8)	Scatter plot for the correlation between Treg and BUN in controls and diabetics. Plotted lines represent local regression smoothing (LOESS) trend lines	110
Figure (9)	Scatter plot for the correlation between Treg and serum creatinine in controls and diabetics. Plotted lines represent local regression smoothing (LOESS) trend lines	110
Figure (10)	Scatter plot for the correlation between Treg and creatinine clearance in diabetics. Plotted line represents local regression smoothing (LOESS) trend line	111
Figure (11)	Scatter plot for the correlation between Treg and proteinuria in diabetics. Plotted line represents local regression smoothing (LOESS) trend line	111
Figure (12)	Scatter plot for the correlation between Th17/Treg ratio and BUN in controls and diabetics. Plotted lines represent local regression smoothing (LOESS) trend lines.	112
Figure (13)	Scatter plot for the correlation between Th17/Treg ratio and serum creatinine in controls and diabetics.	112

List of Figures

	Plotted lines represent local regression smoothing (LOESS) trend lines	
Figure (14)	Scatter plot for the correlation between Th17/Treg ratio and creatinine clearance in diabetics. Plotted	113
	line represents local regression smoothing (LOESS) trend line	
Figure (15)	Scatter plot for the correlation between Th17/Treg	113
	ratio and proteinuria in diabetics. Plotted line represents local regression smoothing (LOESS) trend line	
Figure (16)	Scatter plot for the correlation between Th17 and the grade of nephropathy by US in the whole study population. Plotted lines represent local regression smoothing (LOESS) trend lines.	114
Figure (17)	Scatter plot for the correlation between Treg and the grade of nephropathy by US in the whole study population. Plotted lines represent local regression smoothing (LOESS) trend lines.	115
Figure (18)	Scatter plot for the correlation between the Th17/Treg ratio and the grade of nephropathy by US in the whole study population. Plotted lines represent local regression smoothing (LOESS) trend lines.	115
Figure (19)	Mean Th17 in patients with or without hypertension. Error bars represent 95% CI.	117
Figure (20)	Mean Treg in patients with or without hypertension. Error bars represent 95% CI	117
Figure (21)	Mean Th17/Treg ratio in patients with or without hypertension. Error bars represent 95% CI	118
Figure (22)	Receiver-operating characteristic curve for the value of Th17 in classification of diabetic patients into	120

List of Figures

	those with or without nephropathy	
Figure (23)	Receiver-operating characteristic curve for the value of Treg in classification of diabetic patients into those with or without nephropathy	122
Figure (24)	Receiver-operating characteristic curve for the value of Th17/Treg ratio in classification of diabetic patients into those with or without nephropathy	124

LIST OF ABBREVIATIONS

Abbreviation	Full term
(2hPP)	2 hour post prandial
(3-DG)	3 Deoxyglucosone
(A II)	Angiotensin 2
(Ab)	antibody
(ACE)	Angiotensin converting enzyme
(ACORD)	Anemia correction in diabetes
(ACR)	Albumin creatinine ratio
(ADA)	American diabetes assosiation
(ADP)	Adenosine di-phosphate
(AER)	Albumin execretion rate
(Ag)	Antigen
(AGEs)	Advanced glycated end products
(Ala)	Alanine
(ALT)	Alanine transaminase
(AMP)	Adenosine mono-phosphate
(APC)	Antigen presenting cells
(Apo E)	Apolipoprotein E

List of Abbreviations

(AR)	Aldose reductase
(ARB)	Angiotensin 2 receptor blocker
(AST)	Aspartste transaminase
(ATP)	Adenosine tri-phosphate
(B1)	Bradykinin receptor 1
(B2)	Bradykinin receptor 2
(Ca ⁺²)	Calcium
(c-AMP)	Cyclic adenosine monophosphate
(CBC)	Complete blood count
(CBF-B)	Core binding factor beta
(CCR-3)	Chemokine receptor 3
(CCR-4)	Chemokine receptor 4
(CCR-5)	Chemokine receptor 5
(CCR-6)	Chemokine receptor 6
(CCR-7)	Chemokine receptor 7
(CD)	Cluster of differentiation
(CKD)	Chronic kidney disease
(cTECs)	Cortical thymic epithelial cells
(CTGF)	Connective tissue growth factor
(CTL)	Cytotoxic T lymphocyte

List of Abbreviations

(CTLA-4)	Cytotoxic T lymphocyte antigen 4
(CVA)	Cerebrovascular accident
(CXCL-2)	Chemokine 2
(CXCL-8)	Chemokine 8
(DC)	Denderetic cells
(DKD)	Diabetic kidney disease
(DM)	Diabetes Mellitus
(DN)	Diabetic Nephropathy
(DNA)	Deoxyribonucleic acid
(DTH)	Delayed type hypersensitivity
(EDTA)	Ethylene diamine tetra acetic acid
(eGFR)	Estimated glomerular filtration rate
(ESRD)	End stage renal disease
(FBS)	Fasting blood sugar
(FITC)	Fluorescein isothiocyanate stain
(FOX P ₃)	Forked-winged helix transcription factor
(FPG)	Fasting plasma glucose
(GBM)	Glomerular basement membrane
(GDM)	Gestational diabetes mellitus

(GFR)	Glomerular filtration rate
(GHbs)	Glycated hemoglobin
(GLUT-1)	Glucose transporter 1
(GM-CSF)	Granulocyte macrophage colony stimulating factor
(Hb)	Hemoglobin
(HbA1c)	Glycated Hemoglobin
(HDL)	High density lipoprotein
(HMC)	Human mesangial cells
(HNF)	Hepatocyte nuclear factor
(i T reg)	Inducible T regulatory cells
(ICOS)	Inducible T cell co stimulation
(IFN- γ)	Interferon gamma
(Ig A)	Immunoglobulin A
(Ig E)	Immunoglobulin E
(Ig G)	Immunoglobulin G
(Ig)	immunoglobulin
(IGF-1)	Insulin like growth factor 1
(IGFs)	Insulin like growth factors
(IHD)	Ischemic heart disease

(IL)	Interleukin
(IL-12Rβ1)	interleukin -12 receptor beta 1
(IL-22R)	interleukin -22 receptor
(IL-23R)	interleukin-23 receptor
(IL-2R)	Interleukin 2 receptor
(IPF-1)	Insulin promoter factor 1
(IRF4)	interferon regulatory factor 4
(K ⁺)	Potassium
(LDL)	low density lipoprotein
(LFA-1)	Leukocyte function antigen 1
(LPL)	Lipoprotein lipase
(m RNA)	Messanger ribonucleic acid
(MCH)	Mean corpuscular hemoglobin
(MCHC)	Mean corpuscular hemoglobin concentration
(MCV)	Mean corpuscular volume
(MHC)	major histocompitability complex
(MODY)	Maturity onset diabetes of young
(mTECs)	Medullary thymic epithelial cells
(MTHFR)	Methylene tetrahydrofolate reductase
(Na ⁺)	Sodium

(NADPH)	Nicotinamide Adenine Dinucleotide Phosphate Hydrogen
(NIDDM)	Non insulin dependant diabetes mellitus
(NK)	Natural killer cells
(NKT)	Natural killer T-cells
(nT regs)	Natural T regulatory cells
(OGTT)	Oral glucose tolerance test
(OPG)	Osteoprotegerin
(P38MAPK)	P38 mitogen activated protein kinase
(PBS)	Phosphate buffered saline
(PC)	Phycoerythrin cyanine stain
(PD-1)	Programmed death 1
(PDGF)	Platelet derived growth factor
(PE)	Phycoerythrin stain
(PFN)	Perforin
(PKC)	Protein kinase C
(PLT)	Platelets
(P-MHC)	Peptide major histocompitability complex
(PPAR→)	peroxisome proliferators-activated receptors →
(RAGE)	Receptor for advanced glycation end product