INCREASING THE SOLUBILITY AND BIOAVAILABILITY OF A SLIGHTLY SOLUBLE DRUG USING MICROEMULSIONS

A thesis submitted in the partial fulfillment of the requirements for the PhD Degree of Pharmaceutical Sciences (Pharmaceutics)

by

Rania Mohammed Hafez Mohammed Hathout

Masters of Pharmaceutical Science, 2006, Ain Shams University Teaching assistant, Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Ahmed Shawky Geneidi

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Prof. Dr. Nahed Daoud Mortada

Professor of Pharmaceutics
Dean of Faculty of Pharmacy
Ain Shams University

Dr. Samar Mansour Holayel

Assistant Professor of Pharmaceutics
Faculty of Pharmacy,
Ain Shams University

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics
Cairo
2010

(~)

INCREASING THE SOLUBILITY AND BIOAVAILABILITY OF A SLIGHTLY SOLUBLE DRUG USING MICROEMULSIONS

Acknowledgement

First and foremost thanks to **God** for helping me to fulfill this work.

I want to express my deepest appreciation and sincere gratitude to Prof. Dr. Ahmed Shawky Geneidi, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for his instructive supervision, kind help and generous attitude throughout the development of this work.

I would also like to express my deepest thanks and sincere appreciation to Prof. Dr. Nahed Daoud Mortada, Professor of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, for her valuable guidance, great support and precious advice and for providing great help for the accomplishment of this work.

I would like to express my thanks and apreciation to Assistant Prof. Dr. Samar Mansour Holayel, Assistant Professor of Pharmaceutics, Faculty of Pharmacy, Ain Shams University for the great help and effort she devoted for the completion of this thesis, for her instructive supervision, valuable advice, encouragement and support.

I would like to express my profound gratitude and appreciation to Prof. Dr. Richard Henry Guy, Professor of pharmaceutical sciences, Department of Pharmacy and Pharmacology, University of Bath, UK, for his great help, advice, support, encouragement and effort he offered for the completion of this thesis, accomplishing the novel work in it and bringing the new ideas into reality.

I also like to thank the members of the department of Pharmaceutics, Ain Shams University especially Dr, Amany Osama, AbdelKader Ali and Maha Nasr for their help and support.

I would also like to thank the staff members of the Department of Pharmacy and Pharmacology, University of Bath at the UK, for their help and support in accomplishing the practical part of this thesis.

I would also like to express my gratitude to all of my friends who supported and encouraged me all through the way.

Finally, no words can express my deepest thanks to my parents for their great support and infinite patience throughout the work accomplished in this thesis.

Dedication

I dedicate this thesis to my dear father, mother and siblings, and to the soul of my grandma.

List of Contents

Item	Page
List of Abbreviations	VII
List of Tables	VIII
List of Figures	XI
Abstract	XVII
General Introduction	1
Scope of Work	22
Chapter 1: Preparation and Screening of Different Topical Microemulsion Systems	26
Introduction	26
Experimental	34
Methodology	35
I- High performance liquid chromatography (HPLC) for testosterone in ethyl alcohol (95%)	35
II- Determination of the saturation solubility of testosterone in different oils	35
III- Construction of pseudo-ternary phase diagrams	36

Item	Page
------	------

IV- Evaluation of the prepared microemulsions	36
Results and Discussion	38
I- High performance liquid chromatography (HPLC) of testosterone in ethyl alcohol (95%)	38
II- Saturation solubility of testosterone in different oils	41
III- Pseudo-Ternary phase diagrams	41
IV- Evaluation of the prepared microemulsions	52
Conclusions	57
Chapter 2: Methods Development for the Analysis of Components of a Microemulsion System Using Liquid Chromatography Mass Spectroscopy (LC/MS)	58
Introduction	58
Experimental	63
Methodology	64
I- Development of a novel quantitative method of analysis for oleic acid using LC / MS system	64
II- Development of a novel quantitative method of analysis for Tween20 using LC / MS system	64

Item	Page
III- Development of a novel quantitative method of analysis for Transcutol using LC / MS system	65

Results and Discussion	67
I- Quantitative analysis of oleic acid	67
II- Quantitative analysis of Tween20	71
III- Quantitative analysis of Transcutol	75
Conclusion	80
Chapter 3: Ex-Vivo methods to Assess the Mechanisms of Stratum Corneum Enhancement by Topical Microemulsions	81
Introduction	81
Experimental	93
Methodology	95
I- Preparation of selected microemulsion formulations	95
II- Studing the effects of the microemulsion components on the skin barrier	96
A) ATR-FTIR studies	96
i) Processing	96
Item	Page
ii) Spectral analysis	98
B) Tape stripping followed by ATR-FTIR studies and components analysis across the whole SC depth	98

i) Tape stripping procedure	98
ii) Extraction and analysis of each component in the tape strips	100
iii) Dermatopharmacokinetic comparisons	101
iv) Establishing correlations between FTIR spectrum changes and components concentrations	102
III- Confocal laser scanning microscope (CLSM) imaging	102
Results and Discussion	104
I- ATR-FTIR studies and spectral Analysis	104
II- FTIR changes across the whole SC depth	109
III- Correlations between FTIR changes and components concentrations across the whole SC depth	118
IV- Confocal laser scanning microscope imaging	127
Conclusions	131
Chapter 4: Formulation and Characterization of Testosterone Transdermal Microemulsions	134
Item	Page
Introduction	134
Experimental	140
Methodology	142
I- Preparation of testosterone microemulsions	142

II- Characterization of the prepared microemulsions	142
i) Electrical conductivity measurements	142
ii) Differential scanning calorimetry (DSC)	143
iii) Diffusion-ordered spectroscopy (DOSY)	143
iv) pH measurements	144
v) Rheological measurements	144
vi) Fourier transform infrared spectroscopy (FTIR)	144
vii) ¹ H-NMR and ¹³ C-NMR	145
viii) Determnation of the alteration in the microemulsion microstructure after drug loading	145
ix) Permeation studies	145

Item	Page
x) Study on the effect of increasing the drug loading on the microemulsion microstructure and the permeation flux	147
Results and Discussion	148
I- Electrical conductivity measurements	148
II- Differential scanning calorimetry (DSC)	153
III- Diffusion-ordered spectroscopy (DOSY)	154
IV- pH measurements	157

V- Rheological measurements	159
VI- Fourier transform infrared spectroscopy (FTIR)	161
VII- ¹ H-NMR and ¹³ C-NMR	175
VIII- Ex-vivo permeation	180
IX- Effect of increasing the drug loading on the microemulsion microstructure	188
Conclusions	192
Summary	195
References	207
Arabic Summary	

List of Abbreviations

Stratum Corneum SC

Microemulsion ME

Liquid Chromatography Mass Spectroscopy LC / MS

Attenuated Total Reflectance

Fourier Transform Infrared ATR-FTIR

Confocal Laser Scanning Microscopy CLSM

Total Ion Chromatogram TIC

Single Ion Monitoring SIM

Mono Ion Chromatogram MIC

Mass to Charge ratio m/z

Standard Deviation S.D.

Limit of Detection LOD

Limit of Quantitation LOQ

Coefficient of Variation C.V.

Retention Time R_t

High Performance Liquid Chromatography HPLC

Internal Reflective Element IRE

Transepidermal Water Loss TEWL

Nile Red NR

Dermatopharmacokinetic DPK

Differential Scanning Calorimetry DSC

Nuclear Magnetic Resonance NMR

Diffusion-ordered Spectroscopy DOSY

List of Tables

Table no.	Table Name	Page
1	Formulation considerations for passive transdermal delivery of drugs and their ideal limits.	9
2	Relationship between the concentrations of testosterone in ethyl alcohol (95%) and the peak areas using high performance liquid chromatography assay at 241 nm.	39
3	Effect of the Tween chain length on the water solubilisation parameters of the system oleic acid / Tween / Transcutol / water.	46
4	Dynamic Light Scattering Characterization for selected microemulsions from the system oleic acid / Tween20 / Transcutol / water.	54
5	LC / MS analysis of different concentrations of oleic acid at 210 nm and $m/z=281$.	69
6	Validation parameters for the developed oleic acid quantitative method of analysis using LC / MS.	71
7	LC / MS analysis of different concentrations of Tween 20 at 254 nm and m/z = 1151.	73
8	Validation parameters for the developed Tween20 quantitative method of analysis using LC / MS.	75
9	LC / MS analysis of different concentrations of Transcutol at 254 nm and $m/z = 135$.	77
10	Validation parameters for the developed Transcutol quantitative method of analysis using LC / MS.	79
11	Penetration depth ranges (in μ m) of infrared radiation between 4,000 and 625 cm ⁻¹ for a selection of substrate materials and angles of incidence (n ₁ = 1.6).	85
12	Selected Microemulsion Formulations (%, w/w).	96
13	Partitioning (k) and Rate of Diffusion (D/L²) of Different Microemulsion Components.	125

Table	Table Name					Page	
no.							
14	Stratum	Corneum	uptake	percentages	of	the	126

	microemulsion components following their application as pure chemicals or as constituents of microemulsion F.	
15	Conductivity measurements for the selected unloaded and loaded (1%, w/v) microemulsion formulations.	151
16	Diffusion and relative diffusion coefficients of the different microemulsion components obtained using DOSY-NMR.	156
17	pH measurements for the selected unloaded and unloaded (1%, w/v) microemulsion formulations.	158
18	Dynamic viscosity of the selected unloaded and loaded (1%, w/v) microemulsion formulations.	160
19	OH band frequencies of unloaded and loaded (1%, w/v) microemulsion formulations.	162
20	¹ H-NMR chemical shifts of different functional groups of unloaded and loaded microemulsion F.	177
21	¹³ C-NMR chemical shifts of Oleic acid, Tween20 and Transcutol functional groups after incorporation of Drug (1%, w/v) in microemulsion F.	179
22	High performance liquid chromatography analysis of different concentrations of testosterone at 241 nm in PBS.	181
23	Drug Partitioning (KH) and Diffusivity (D/H²), Together with Estimated Permeability Coefficients (K_p) and Steady-State Fluxes (J_{ss}) of Testosterone (1%, w/v) from different microemulsions of the system oleic acid / Tween20 / Transcutol / water, across Porcine skin (740 μ m).	186
24	Drug Partitioning (KH) and Diffusivity (D/H²) Parameters, Together with Estimated Permeability Coefficient (K_p) and Steady-State Flux (J_{ss}) of Testosterone (1% and 3%, w/v) from the microemulsion system oleic acid / Tween20 / Transcutol / water (16%, 32%, 32%, 20% respectively) across Porcine Skin (740 μ m).	188

Table no.	Table Name	Page
25	Changes in the physical parameters of microemulsion E after loading with the drug (1% and 3%, w/v).	190
26	¹ H-NMR chemical shifts of different functional groups of unloaded and loaded (3%, w/v) microemulsion E.	191

List of Figures

Figure no.	Figure Name	Page
1	Stratum corneum morphology (brick and mortar-like pattern).	3
2	Macro-routes of drug penetration: (1) across the continuous stratum corneum; (2) through the hair follicles with their associated sebaceous glands or (3) via the sweat ducts.	3
3	Permeation routes through the stratum corneum (i) via the lipid matrix between the corneocytes (intercellular route) and (ii) across the corneocytes and the intercellular lipid matrix (transcellular route).	4
4	Structure of testosterone (17β-hydroxyandrost-4-en-3-one, M.W. 288)	17
5	Schematic representation of the three most commonly encountered microemulsion microstructures: (a) oil-in-water, (b) bicontinuous and (c) water-in-oil microemulsion.	27
6	Penetration of oil molecules between the hydrophobic chains of the interfacial surfactant monolayer in a bicontinuous microemulsion.	28
7	Chromatogram of testosterone at wavelength of 241 nm.	38
8	Testosterone calibration curve in ethyl alcohol (95 %) at 241 nm using high performance liquid chromatography.	40
9	Solubility of testosterone in different oils.	41
10	Solubilisation parameters for Oleic acid / Tween20 / Transcutol / Water phase diagram where the mixing ratio of Tween20 : Transcutol is 1:1. ME is the area of water-in-oil, bicontinuous and oil in water microemulsion (one phase region). W_m is the maximum amount of solubilised water, S_m is the amount of surfactant needed to obtain maximum water solubilisation.	44
11	Phase diagrams of different oleic acid / Tween /	45