

Relation between bronchial asthma, body composition and serum adiponectin level in obese asthmatic children

Thesis submitted for fulfillment of PhD in childhood studies

(Child Health and Nutrition)

Medical Studies of Children Department

By

Dina Ahmed Mohammed Salah Eldin El-fayoumy M.Sc Pediatrics- Cairo University

Under Supervision of

Dr. Maysa Nasr Farid

Professor of pediatrics
Department of medical studies
Institute of postgraduate
childhood studies

Dr. Lobna Sayed Sherif

Professor of child health Department of child health National research Centre

Dr. Nevine Elsayed Elhelaly

Professor of Pediatrics Faculty of Medicine Cairo University

Dr. Mona Hamed Ibrahim

Assistant Professor of Clinical & Chemical Pathology National Research Centre

Institute of Postgraduate Childhood Studies
Ain Shams University

بسم الله الرحمن الرحيم

"قَالُواْ سُبِحَانَك لاَ عِلمَ لَنَا إِلاَ مَا عَلَّمَتَنَا إِنَّكَ أَنَتَ الْعَلِيمُ الْحَكِيمُ"

> (صدق الله العظيم) سورة البقرة (٣٢)

Acknowledgment

First of all, thanks to **ALLAH** the most generous and merciful for completing this work.

I would like to express my sincere thanks and deep gratitude to *Prof. Dr. Maysa Nasr Farid*, Professor of pediatrics, Department of Medical Studies of Children, Institute of Postgraduate Childhood Studies, for her great support, kind guidance, meticulous revision and encouragement in performing this work.

I also wish to express my extreme appreciation, gratitude and respect to *Prof. Dr. Lobna Sayed Sherif*, Professor of child health, Child Health department, National Research Centre, for her faithful supervision, valuable time, constructive guidance and real interest in the progress of this work.

Many sincere thanks to *Prof. Dr. Nevine El Helaly, Professor* of pediatrics, Faculty of Medicine, Cairo University, for her kind advice, help and support throughout this work.

My deepest thanks and gratitude to *Prof. Dr. Tarek Salah*, Professor of child health, Child Health Department, National Research Centre, for his continuous support, guidance and encouragement.

I am also very thankful to **Ass.***Prof. Dr. Mona Hamed*, Assistant Professor of clinical and chemical pathology, National Research Centre, who generously contributed to this work, and provided me with much support and guidance.

At last but not the least, I would like to express my profound gratitude and love to my whole family especially; my husband, for his great support and devoted care, my sons for their patience and love, my dear mother for her persistent faith and encouragement and my beloved father, may he rest in peace, who will always be my role model and inspiration.

Abstract

Asthma and obesity have serious health consequences and significant financial costs. The increase of asthma has paralleled the emerging obesity during the past decades. The ongoing epidemic of obesity in children has highlighted the importance of body composition for short term and long term health. Hence, components of body composition influence health outcomes, and their measurement is increasingly considered valuable in clinical practice.

Aim of the study: to evaluate the level of adiponectin as a hormone of energy metabolism in obese and non-obese asthmatic children, to investigate the association between serum adiponectin, CRP, IL-6 levels and body composition parameters in asthmatic children, its effect on asthma severity and the clinical outcome and to emphasize on the bad effect of obesity on asthma and hence show the importance of weight loss for improvement of patients.

Subjects and Methods: the present study was conducted on 90 children. Their ages ranged from 7-12 years. Cases were divided into 2 groups; Group1: 30 nonobese asthmatic children. Group2: 30 obese asthmatic children. Another 30 apparently healthy children of matched age and sex as the control group, (Group 3). All cases were subjected to complete history taking and clinical examination. They comprised both males and females with range from 7-12 years. Anthropometric measurements (height & weight) were taken from the 3 groups as well as body composition parameters. Laboratory samples were collected from the 3 groups including: serum adiponectin, IL6 &CRP using the ELISA method.

Results: the obese asthmatic group showed highly statistically significant differences compared to the non-obese asthmatic group regarding: weight, BMI, Fat %, FM, FFM, IMP, TBW, BMR. The obese asthmatic group showed statistically significant differences compared to the

control regarding: weight, BMI, FM, FFM, IMP, TBW, BMR and fat%. The non-obese asthmatic group showed highly significant increase in serum IL6 and CRP compared to the control group. The obese asthmatic group showed highly significant increase in serum IL6 and CRP compared to the control group. Serum adiponectin level showed highly significant decrease in the obese asthmatic group compared to the control group. Serum adiponectin level showed highly significant decrease in the obese asthmatics both boys and girls compared to non-obese asthmatics. On the other hand, serum IL6 and CRP showed highly significant increase in the obese asthmatics compared to non-obese asthmatics.

Conclusion: Obesity aggravates the severity of asthma. Adiponectin markedly decreases in obese asthmatic children which plays a role in worsening asthma symptoms. CRP &IL6 increase sharing a big deal in the inflammation process. BMI, F%, FFM and IMP affect the level of adiponectin, CRP &IL6.

Key words: asthma, obesity, children, body composition, adiponectin, CRP, IL6

Contents

List of figures	
List of tables	
List of abbreviations	vi-vii
Introduction and aim of work	1-5
Review of literature	
Bronchial asthma	6-54
Obesity	55-83
Asthma and Obesity	84-98
Subjects and methods	99-113
Results	114-141
Discussion	142-164
Conclusion	165
Recommendations	166
Summary	167-172
References	173-227
Arabic summary	1 /

List of figures

Fig (1): Pathological changes of the bronchi	
Figure (2): Pathological features of asthma.	
Fig (3): Management approach based on control (for	
children ≥ 5 years):	
Fig (4): Management of acute asthma exacerbation	40
Fig (5) CDC BMI percentile charts	66-67
Figure (6): Strategies for pediatricians and family	78
practitioners to use for the prevention of pediatric obesity	
Fig (7): The link Between Obesity and Asthma	
Fig (8): obesity and systemic inflammation	
Fig(9): Mean age of studied groups in years	
Fig (10)Gender distribution of the studied groups	
Figure (11): Distribution of non-obese asthmatic cases	
according to the severity of asthma	
Figure (12): Distribution of obese asthmatic cases	118
according to the severity of asthma	
Figure (13): Distribution of studied asthmatic cases	118
according to the severity of asthma	
Figure (14): Mean serum adiponectin level of the three	124
studied groups	

List of figures

Figure (15): Mean serum IL6 level of the three studied	124
groups	
Figure (16): Mean serum CRP level of the three studied	
groups	
Figure (17): Correlation between serum adiponectin level	127
and the fat % in obese asthmatic cases	
Figure (18): Correlation between serum adiponectin level	128
and the free fat mass in obese asthmatic cases	
Figure (19): Correlation between serum adiponectin level	128
and impedance in obese asthmatic cases	
Figure (20): Correlation between serum adiponectin level	132
and severity of asthma in non-obese asthmatic cases	
Figure (21): Correlation between serum adiponectin level	133
and severity of asthma in obese asthmatic cases	
Figure (22): ROC curve between serum adiponectin and	138
asthma severity in obese asthmatic cases	
Figure (23): ROC curve between serum IL 6 and asthma	139
severity in obese asthmatic cases	[
Figure (24): ROC curve between serum CRP and asthma	140
severity in obese asthmatic cases	

List of tables

Table (1): Structural Changes in Asthmatic Airways	
Table (2): Airway Narrowing in Asthma	
Table (3): Classification of asthma severity by clinical	
features before treatment	
Table (4) Levels of asthma control	32
Table (5) Strategies for avoiding common allergens and	
pollutants	
Table (6) Management approach based on control (for	
children ≤ 5 years)	
Table (7) Assessment of exacerbation severity	
Table (8) Estimated daily doses of inhaled corticosteroids for	
children	
Table (9) Medications used in long-term control of asthma in	
children	
Table (10) Risk factors for obesity	61
Table (11) Complications of obesity	63
Table (12) BMI for age categories and corresponding	
percentiles	
Table (13): Target Levels and Daily Dietary Intakes for	
Children and Adolescents	
Table (14): Classification of severity of asthma according to	102
symptoms	

Table (15): Demographic data of studied groups		
Table (16): Distribution of cases according to the severity of		
asthma		
Table (17): Anthropometric data of studied asthmatic cases	119	
Table (18): Anthropometric data of non-obese asthmatic		
cases versus control		
Table (19): Anthropometric data of obese asthmatic cases		
versus control		
Table (20): Laboratory findings of studied asthmatic cases		
Table (21): Laboratory findings of non-obese asthmatic		
cases versus control		
Table (22): Laboratory findings of studied obese asthmatic		
cases versus control		
Table (23): Correlation between the inflammatory markers	126	
and the body composition parameters in non-obese asthmatic		
cases		
Table (24): Correlation between the inflammatory markers	127	
and the body composition parameters in obese asthmatic		
cases		
Table (25): Correlation between the severity of asthma and	130	
the body composition parameters in non-obese asthmatic		
cases		

Table (26): Correlation between the severity of asthma and	131
the body composition parameters in obese asthmatic cases	
Table (27): Correlation between the severity of asthma and	132
the pro-inflammatory markers in non-obese asthmatic cases.	
Table (28): Correlation between the severity of asthma and	133
the pro-inflammatory markers in obese asthmatic cases	
Table (29): Correlation between the pro-inflammatory	134
markers in non-obese asthmatic cases	
Table (30): Correlation between the pro-inflammatory	135
markers in obese asthmatic cases	
Table (31): Linear regression for the severity of asthma in	136
non-obese asthmatic cases	
Table (32): Linear regression for the severity of asthma in	137
obese asthmatic cases	

List of abbreviations

WHO	World health organization
Th2	T helper 2 lymphocytes
VEGF	Vascular endothelial growth factor
GINA	Global initiative for asthma
COPD	Chronic obstructive pulmonary disease
IgE	Immunoglobulin E
RAST	Radioallergosorbent testing
ECG	Electrocardiograph
PFTs	Pulmonary function tests
FEV1	Forced expiratory volume in the 1 st second
FEF25-75	Forced expiratory flow at 25-75% of vital capacity
PEFR	Peripheral expiratory flow rate
FVC	Forced vital capacity
HRCT	High resolution computed tomography
NHLBI	National Heart, Lung and Blood Institute
FDA	Food and Drug Administration
ICS	Inhaled corticosteroids
LABA	Long acting-β2 Agonists
IL-4	Interleukin 4
INF gamma	Interferon gamma
TNF	Tumor necrosis factor

BMI	Body mass index
CDC	Centre of disease control and prevention
IL-6	Interleukin-6
CRP	C reactive protein
TZD	Thiazolidinedione
CAD	Coronary artery disease
NF-kB	Nuclear factor kappa B
FM	Fat mass
FFM	Fat-free mass
F%	Percent body fat
TBW	Total body water
NHMRC	National Health and Medical Research Council
FRC	Functional residual capacity
ASM	Airway smooth muscle
NHLBI	National Heart, Lung, and Blood Institute
MAP	Mitogen-activated protein kinase
IMP	Impedance
BMR	Basal metabolic rate
NNI	National nutrition institute
hsCRP	High-sensitivity C reactive protein
TMB	Tetramethylbezidine
ROC	Receiver operating characteristic curve
SPSS	Statistical Package for Social Science

Introduction

Several epidemiological studies have shown that the prevalence of bronchial asthma and obesity is increasing concomitantly worldwide among children and young adults (Ford, 2005).

Asthma and obesity have serious health consequences and significant financial costs. The burden of obesity on pulmonary function in children is highlighted by the increased frequency of bronchial hyper-responsiveness, increased number of prescribed medications and inhaled corticosteroid (ICS) use, and reduced peak expiratory flow rate in overweight / obese asthmatic children compared to non-overweight asthmatic children. Excess body weight is also associated with an increase in the number of school days missed by asthmatic children and significantly reduced quality of life (Van Gent et al, 2007).

Asthma is a chronic inflammatory disease of the airways in which many cellular elements play a role, in particular mast cells, eosinophils, T-lymphocytes, macrophages, neutrophils, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread

but variable airflow obstruction that is often reversible, either spontaneously or with treatment. (National Heart, Lung, and Blood Institute, Export panel report 3, 2008).

For children and adolescents 2 to 18 years old, overweight is defined as a body mass index (BMI) at or above the 85th percentile and lower than the 95th percentile. Obesity is defined as a BMI at or above the 95th percentile for children of the same age and gender. (Centers for Disease Control and Prevention. 2009).

The increase of asthma has paralleled the emerging obesity during the past decades (Chinn et al, 2001). Several researches have concluded that there is a positive association between obesity and asthma (Weiss, 2005, Beuther et al, 2006, Shore, 2007,). Several mechanisms have been postulated (Shore, 2006 and Shore, 2007).

Firstly, genetic and environmental factors may increase the risk of obesity concurrently with asthma (Hallstrand et al, 2005, Mai et al, 2007). Secondly, obesity may increase the risk of asthma through its effects on other disease process, e.g. obesity is a risk factor for sleeping-disordered breathing and gastroesophageal reflux disease (Hampel et al 2004, Vazquez et al,2004) and these two diseases are associated with an increased risk for asthma (Sulit et al, 2005, Hancox et al, 2006). Thirdly, morbid obesity can reduce lung volume and airway diameter and