

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Ain Shams University

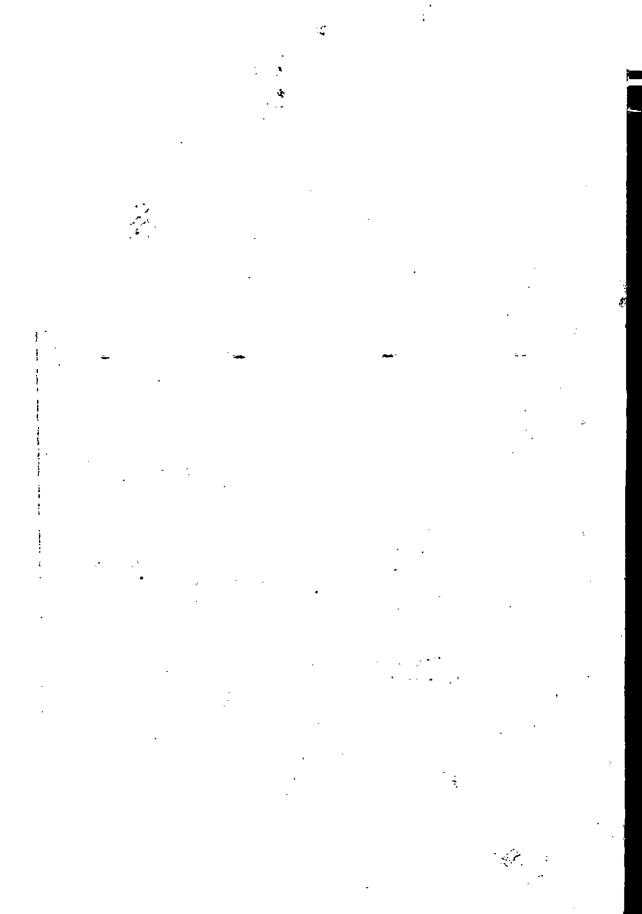
/Faculty of Engineering

OFTIMAL PLANNING OF TRANSMISSION NETWORKS

B5794

Вy

Eng. RAMADAN ELSYED BARHIM MOHAMED , B.Sc., M.Sc.


A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Ph.D in Electrical Engineering

Supervised By

Prof. Dr. Metwally EL-Sharkway & Associate Prof. Hesham Kamel Temraz

Cairo- 1997

APROVAL SHEET

OPTIMAL PLANNING OF TRANSMISSION NETWORKS

Eng. RAMADAN EL- SAYED BARHIM MOHAMED

B.sc, M.sc, in Electrical Power Engineering

This Thesis for the degree of Ph.D. in Electrical

Engineering has been approved by: -

		T
	Name, Title and Affiliation	Signature
1.	Prof. Dr. Ibrahim Mahmoud El- Shair Elect. Power & Machines Engineering Deptartment Faculty of Engineering Ain- Shams University	
2.	Prof. Dr. Ezzat Abd El-Aziz Mansour Electric Engineering Department. Collage of Engineering and Islamic Architecure Umm Al- Qura University Saudi Arabia	
3.	Prof. Dr. Metwally Awad El-Sharkawy Elect. Power & Machines Engineering Deptartment Faculty of Engineering Ain- Shams University	194.11.
4.	Associate Prof. Hesham Kamel Temraz Elect. Power & Machines Engineering Deptartment Faculty of Engineering Ain Shams- University	\v\v

Ain-Shams University
Faculaty of Engineering
Thesis of Ph.D. of Electrical Engineering

Student Name: Ramadan El-Sayed Barhim

Title of the Thesis :

OPTIMAL PLANNING OF TRANSMISSION NETWORKS

<u>Degree</u>: B.sc in Electrical Engineering, Assiut
University, 1979
M.sc in Electrical Engineering, Ain-shams
University, 1990

Under the Supervision of :

- 1- Prof. Dr. Metwally Awad El- Sharkawy, Electric Power & Machines Engineering Department
- Associate Prof. Hesham Kamel Temraz, Electric Power & Machines Engineering Department.

STATEMENT

This thesis is submitted to the Faculaty of Engineering Ain-Shams university for the Ph.D. degree in electrical engineering.

The work included in this thesis was carried out by the author in the department of electrical power and machines, Ain shams university, 12 /11 /1990 -/ / 1997.

No part of this thesis has been submitted for a degreeor a qualification at any other university or institution.

Date:

Signiture:

Name:Ramadan Elsyed Barhim

ACKNOWLEDGEMENT

Thanks to God who enabled me to finish this work.

I wish to express my sincere gratitude to Dr. Metwally Awad El- Sharkawy & Accociate Hesham Temaraz who proposed the point of research provided me by most references, for supervision, great help, continuous encouragement, unlimited assistance, continuous guidance valuable suggestions during the supervision οf this work. without their quidance and encouragement, this research would never has completed.

Thanks for Prof. Dr., the head of Electrical Power and Machines Engineering Department Ain-Shams University for all facilities he made.

Thanks for the helpful cooperation and assistance of the staff of Electrical Power and Machines Engineering Department.

Thanks for the chairman of PetroGas Company Eng. Ahmed Ali Halef for the facility he offered me.

Thanks also for the general director of LPG department of PetroGas Company Eng. Moustfa Kamel EL-Taweel for his continuous encouragement and his assistance to me.

Finally, thanks for all staff of the quality control department of LPG Mostord factory of PetroGas Company for their assistance and help.

ABSTRACT

Currently. several transmission planning techniques are available for application. Those available techniques involve different assumptions which planning often lead. to suboptimal, but not optimal, results.

main objectives of this thesis The are to develop algorithms and digital computer programs necessary for solving transmission planning problems. In this thesis, a new flexible and nonlinear transmission planning model is proposed. The model can be applied to both static (single time step) and dynamic (multi time step) planning modes. In the proposed model, the cost function includes an accurate representation of the fixed cost o f potential transmission lines substations, the operating cost, and cost losses for all existing and potential substations and transmission lines. The cost function minimized subject to demand satisfaction constraints. line | and substation capacity constraints, plant capacity constraints, stability constraints and logic constraints. In addition, different operating voltage levels, accurate power flow in each part of the system, interest inflation rates are included in the newly developed model. One of the main feature οf this the development ο£ modified new contingency analysis model. This model ls very **Important** and useful in securing system reliability. Single, multiple, and severe contingency tests can be easly handled by this model. Application of the developed model and comparision with other available models results [25], have shown that the model is accurate, efficient and easy to apply.

is devided into five chapters. This thesis Chapter I, general introduction in which I n previous work is reviewed and the scope of the thesis is outlined. In Chapter II, mathematical modelling of the transmission planning and algorithms are described, In Chapter III, the Application of the model containing three different study; Static, Pesudo-dynamic and modes ο£ Dynamic modes and a comparison between them are presented. In addition, many different planning voltage levels (220 kv, 340 kv, 500 kv and 750 kv) discussed and compared. In Chapter IV, a contingency analysis model anđ its application including some cases study for the purpose reliability criterion are presented. In Chapter concluding remarks are stated.