THROMBOPROPHYLAXIS AFTER TOTAL KNEE ARTHROPLASTY

An Essay

Submitted for partial fullfilment of master degree in Orthopedic Surgery

By Karim Nabil Aly M.B.B.Ch. Ain Shams University

Supervised by

Prof. Dr/ Mahmoud Ahmed El-Sebai

Professor of Orthopedic Surgery, Faculty of Medicine Ain Shams University

Assist Prof. Dr/ Mohamed Abdel-Moneim

Assistant Professor of Orthopedic Surgery, Faculty of Medicine Ain Shams University

Ain Shams University 2014

الوقايه من حدوث الجلطه الوريديه العميقه بعد جراحات الاستبدال الكامل لمفصل الركبة

مقالة توطئة للحصول على درجة الماجستير في جراحة العظام

مقدمة من ط/ كريم نبيل علي حسن بكالوريوس الطب والجراحة جامعة عين شمس

تحت إشراف

ا.د/محمود أحمد السباعي استاذ جراحة العظام - كلية الطب جامعة عين شمس

ام .د/محمد عبد المنعم استاذ مساعد جراحة العظام – كلية الطب جامعة عين شمس

کلیة الطب _ جامعة عین شمس ۲،۱۶

ACKNOWLEDGMENT

First of all I wish to express my endless thanks to ALLAH for giving me the help to perform this work.

I would like to express my deepest gratitude and sincerest thanks to *Prof. Dr. Mahmoud Ahmed El-Sebaie*, Professor of Orthopedic Surgery; Ain Shams University, for giving me the privilege to work under his supervision and for giving me his valuable advices.

Many thanks for *Assist Prof. Dr. Mohamed Abdel-Moneim* Assistant Professor of Orthopedic surgery; Ain Shams University for his continuous guidance, correction, explanations, provision of support and supportive attitude.

I would also thank all my family for their support, encouragement and patience throughout this work and for being always there when I needed them.

بسم الله الرحمان الرحيام

ر و فوق کا دالا علیم

صدق الله العظيم سورة يوسف: الآيه ٧٦

TABLE OF CONTENTS

Title	Page
Anatomy of the Venous System of the Lower Limb	1
Patients with High Risk for DVT	21
Non-pharmacological Methods of Prophylaxis	45
Pharmacological Methods of Prophylaxis	58
Conclusion	92
References	97
Arabic Summary	

LIST OF ABBREVIATIONS

AAOS	American Academy of Orthopedic Surgeons
AC	anticoagulant
ACCP	American College of Chest Physicians
aPPT	activated partial thromboplastin time
ASRA	American Society of Regional Anesthesia
AT	antithrombin
COX	cyclo oxygenase
СТРН	chronic thromboembolic pulmonary hypertension
d	Dalton
Disc AC	discontinuation of anticoagulant
DVT	deep venous thrombosis
ESA	European Society of Anesthesiology
GCS	graduated compression stockings
GI	gastrointestinal
HIT	heparin induced thrombocytopenia
hrs	hours

HRT	hormone replacement therapy
HT	hormonal therapy
ICU	intensive care unit
IgG	Immunoglobulin G
INR	International Normalized Ratio
IPCD	intermittent pneumatic compression device
IU/kg	international unit per kilogram
iv	intravenous
IVC	inferior vena cava
LDUH	low dose unfractionated heparin
LMWH	low molecular weight heparin
mg/d	milligram per day
mmHg	millimeter mercury
PE	pulmonary embolism
PTS	post thrombotic syndrome
RA	rheumatoid arthritis
sc	subcutaneous
THA	total hip arthroplasty
TKA	total knee arthroplasty

t-PA	tissue plasminogen activator
UFH	unfractionated heparin
U/kg/d	unit per kilogram per day
VFP	venous foot pump
VKA	vitamin K antagonist
VTE	venous thromboembolism
VVs	varicose veins

LIST OF FIGURES

Figure No.	Title	Page
Fig 1	Great saphenous vein and its tributaries	4
Fig 2	Transverse ultrasound image of the great	5
	saphenous vein showing an "Egyptian eye"	
	appearance	
Fig 3	Small saphenous vein	8
Fig 4	Anatomy of the lower extremity venous	11
	system	
Fig 5	Perforating veins connect superficial and	14
	deep veins	
Fig 6	Venous sinuses : effect of contraction of	17
	calf muscles	
Fig 7	Venous thrombus formation in the cusps of	20
	veins	
Fig 8	The proportion of patients with clinically	22
	suspected deep vein thrombosis increases	
	with the number of risk factors	
Fig 9	Increase risk of DVT with elderly patients	35
Fig 10	Elastic stockings	47
Fig 11	Intermittent pneumatic compression device	48
Fig 12	Inferior vena cava filter	50
Fig 13	Electrical foot stimulation device	53
Fig 14	The coagulation cascade and targets for	65
	anticoagulant agents	
Fig 15	Comparison of binding sites for standard	68
	heparin and low-molecular-weight heparin	

LIST OF TABLES

Table No.	Title	Page
Table 1	Risk Factors Observed in 1231 Consecutive Patients Treated for Acute DVT and/or PE in a study conducted by Anderson et al 2003	24
Table 2	Risk Factors for Venous Thromboembolism	32
Table 3	Incidence of Recurrent DVT According to Risk Factor in a study conducted on 153 patients with an acute first episode of DVT	33
Table 4	Comparative Biologic and Clinical Properties of the Heparin Family of Antithrombotic Agents and of Fondaparinux	75
Table 5	Efficacy and safety data from a trial comparing dabigatran etexilate with the European enoxaparin dose as thromboprophylaxis following elective total knee replacement surgery	78
Table 6	Efficacy and safety data from a trial comparing rivaroxaban with the European enoxaparin dose as thromboprophylaxis following elective total knee replacement surgery	82
Table 7	Characteristics of dabigatran, apixaban and rivaroxaban	86

INTRODUCTION

Total joint replacement surgery is one of the most common and successful treatments for all types of arthritis and other painful conditions of the hip or knee. It replaces destroyed or worn-out surfaces with new, uniform surfaces. In an arthritic knee the damaged ends of the bones and cartilage are replaced with metal and plastic surfaces that are shaped to simulate knee movement and function. (1)

Dramatic advancements in the knowledge of knee mechanics have led to design modifications that appear to be durable. Significant advances have occurred in the type and quality of the metals, polyethylene, and, more recently, ceramics used in the prosthesis manufacturing process, leading to improved longevity. As with most techniques in modern medicine, more and more patients are receiving the benefits of total knee arthroplasty (TKA). Approximately 130,000 knee replacements are performed every year in the United States.(2)

The primary indication for total knee arthroplasty is to relieve pain caused by severe arthritis. The pain should be significant and disabling.

Correction of significant deformity is an important indication but is rarely used as the primary indication for surgery.(3)

Deep Venous Thrombosis (DVT) is one of the most feared complications of total knee replacement surgery and potentially can be fatal if the thrombous embolises to the lungs. A DVT may be silent, presenting as a pulmonary embolism with shortness of breath, chest pain, and cyanosis, without limb symptoms. Alternatively, it may present with a painful calf or thigh usually 5-7 days postoperatively or earlier.(4)

The release of thromboplastins from dissected soft tissue and especially reamed bone, as well as venous stasis both during surgery and during relative postoperative immobility, provoke a high risk of thromboembolism.(5)

There is general agreement that prophylaxis against venous thromboembolism is necessary after total joint arthroplasty, but the ideal prophylactic regimen has not been identified. The selection of a prophylactic regimen is a balance between efficacy and safety.(6)

Without thromboprophylaxis, 40–60% of patients will develop objectively confirmed, hospital-acquired, asymptomatic, or symptomatic deep vein thrombosis.(7)

It is likely that early mobilization, careful surgical technique, and adequate rehydration will all reduce the risk of DVT after joint arthroplasty. Graduated compression stockings are of some benefit but must be well fitted. Mechanical foot or calf compressors are effective in total knee arthroplasty, although probably not quite as effective as the best pharmacological methods.(8)

Many pharmacologic agents are currently available to prevent thrombosis. Pharmacologic agents presently include warfarin, LMWH (low molecular weight heparin), fondaparinux, rivaroxaban, dabigatran,and apixaban.(9)

Although LMWHs are safe and effective as anticoagulants after THA and TKA, they require subcutaneous (sc.) administration. Fondaparinux, a synthetic pentasaccharide that inhibits thrombin generation by binding to anti-thrombin and selectively inhibiting factor Xa, also needs sc. administration.(10) Warfarin has the advantage of oral administration,

but has a narrow therapeutic window with unpredictable pharmacokinetics and pharmacodynamics. Regular coagulation monitoring and dose adjustment of warfarin is required to ensure optimal anticoagulation.(11)

The new oral anticoagulants; anti Xa agents rivaroxaban and apixaban, and the direct thrombin inhibitor dabigatran are now approved for prophylaxis against venous thromboembolism in patients undergoing knee replacement surgery.(12)

High risk orthopedic procedures place patients at risk for DVT. Therefore, prophylaxis with anticoagulant medications, as well as the adjunctive use of mechanical devices, is essential. The most effective treatment protocol for a patient must be determined on a case by case basis and account for the risk benefit ratio in each situation.(13)

AIM OF THE WORK

The aim of this work is to discuss the different methods of decreasing the incidence of deep venous thrombosis in patients undergoing total knee replacement surgery.