Anterior Approach for Surgical Management of Dorsolumbar Fractures

An essay

Submitted for partial fulfillment of the requirements of Master Degree of Neurosurgery

By

Ibrahim Mahmoud Hegazy M.B.B. Ch.,

Supervisors

Prof. Dr. Essam Eldeen Abdelrahman Emara

Professor of Neurosurgery
Faculty of Medicine- Ain Shams University

Prof. Dr. Ayman Abd Elraouf Elshazly

Professor of Neurosurgery
Faculty of Medicine
Ain Shams University

Ass. Prof. Dr. Hasan Mohammad Jalalod'din

Associate Professor of Neurosurgery
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Essam Eldeen Abdelrahman Emara**, Professor of Neurosurgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Ayman Abdelraoof Elshazly**, Professor of Neurosurgery, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Great thanks to Associate. Prof. Dr. Hasan Mohammad Jalaloddin Associate. Professor of Neurosurgery, Faculty of Medicine, Ain Shams University. I will never be able to express my feelings and gratitude towards his generous help and continuous support throughout this work, and I wish to be able one day to return A part of what he has offered to me.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Ibrahim Mahmoud Hegazy

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Anatomical Review	5
Biomechanics	40
Classification of Dorsolumbar Fractures	50
Clinical Evaluation	60
Investigations	71
Management of Dorsolumber Fractures	84
Complication of Anterior Spinal Surgery	150
Summary	163
References	166
Arabic Summary	

List of Abbreviations

ABC : Airway, Breathing, Circulation

ALL : Anterior longitudinal ligament

ALPS : Anterior locking plate system

ARM : Anterior radicularis magna artery

ASIA : American Spinal Injury Association

CSF : Cerebrospinal Fluid

DLCO : Diffusing Capacity Of The Lung For Carbon

Monoxide

GIT : Gastrointestinal tract

IAR : Instantaneous axis of rotation

LMWH : Low molecular weight heparin

MEP : Motor evoked potentials

MRI : Magnetic resonance imaging

NSAIDs : Non steroidal anti inflammatory drugs

PDS : Polydioxanone

PFT : Pulmonary function test

PLL : Posterior longitudinal ligament

SCI : Spinal cord injury

SSEP : Somatosensory evoked potentials

V/Q scan : Ventilation/perfusion lung scan

VTE : Venous thromboembolism

WHO : World Health Organization

List of tables

Table	Title	Page
1	Denis Classification of Thoracolumber	51
	Injuries	
2	Pain assessment according to "WHO"	64
	classification	
3	Frankel grading system	65
4	ASIA scale	66
5	Harrington classification	67

List of Figures

Fig.	Title	Page
1	Superior and Lateral view of Typical Thoracic vertebra	8
2	Lateral view of Thoracic vertebra and its related Joints and ligaments	8
3	Showing typical lumbar vertebra (A) superior view (B) lateral view	13
4	The sacrum and coccyx anterior and posterior view	14
5	Superior view of intervertebral disc	16
6	Posterior longitudinal ligament. Attachments of the deep and superficial layers of the posterior longitudinal ligament	20
7	Formation and branching of a typical spinal nerve	24
8	The arterial supply and venous drainage of the spinal cord From	26
9	The mediastinum	30
10	A transverse section of the thorax	32
11	Anatomy of the diaphragm	33
12	Coronal sections through the thoracoabdominal musculature	35
13	Diagrammatic a horizontal section through the abdomen at the level of the first lumbar vertebra	39
14	Vertebral motion segment	43
15	Three column model of the spine.	48
16	Subtypes of burst fractures according to Denis.	54
17	Classification of seat belt-type injuries according to Denis	56

Fig.	Title	Page
18	Plain films shows burst fracture of L1 and compression fracture of L2	73
19	Sagittal 3-dimensional and multiplanar reformatted CT images of a fixation of the thoracic-lumbar junction	77
20	Epidural hematoma. Sagittal MR of the lumbar spine demonstrates a burst fracture of L1 with (A) T1 hyperintense, (B) T2 isointense, and (C) STIR hyperintense, extra-axial material posterior to T12-L2, consistent with blood products). (D, E) T2 axials confirm the epidural location of the blood products, confirming that this is an epidural hematoma	80
21	Anterior and posterior bone scan planar images reveal multiple foci of increased radionuclide uptake, not only in the thoracic and lumbar spine but also in the ribs and sacrum	81
22	T-shaped skin incision for cervicothoracic exposure	102
23	Cervicosternal skin incision for cervicothoracic exposure	102
24	Exposure after manubriumectomy	104
25	Patient positioning in the lateral position for standard posterolateral thoracotomy	105
26	Shows skin incision in transthoracic approaches	106

Fig.	Title	Page
27	Divide the latissimus dorsi posteriorly in line with the skin incision	107
28	A subperiosteal dissection is performed and Entering the pleura from above the ribs to protect the inferior neurovascular bundle, which lie along its lower border	108
29	Exposure of the dorsal spine after lung retraction and incision of parietal pleura	109
30	Right and lateral view of the thoracic cavity shows the sympathetic chain ganglia	111
31	Lateral decubitus position for thoracolumbar exposure	113
32	Skin incisions for the thoracolumbar junction; the incision varies according to the level of the lesions	113
33	Muscle incision and dissection; the latissimus dorsi muscle and serratus anterior muscles are transected first, and the deep abdominal muscles are incised later	114
34	Subperiosteal dissection is made around the rib, and a short rib segment (about 10 cm) is removed from the angle of the rib to the costal cartilage	115
35	The psoas muscles are stripped from the vertebral body. The segmental arteries and veins are tied and ligated to allow mobilization of the major vascular trunk	116
36	Diaphragm closure starts from the crus connection, and gradual reapproximation is done with preapplied sutures	118

Fig.	Title	Page
37	Position of patient for retroperitoneal flank approach	121
38	Different levels of incisions in flank	121
39	retroperitoneal approach External oblique muscle visualized	122
40	•	122
40	Division of the internal oblique muscle in line with the skin incision	122
41	Exposure of the retroperitoneal space	123
42	Mobilization and retraction of the peritoneal cavity and its contents medially	124
43	Ligation of the lumbar segmental vessels	125
44	Anatomy of the lumbosacral plexus	126
45	Axial view of the retroperitoneal approach	127
46	The skin incision is made over the left lateral border of the rectus muscle	128
47	The plane between the transversalis fascia and the peritoneum is developed laterally. The abdominal contents are mobilized medially	129
48	Exposure of L5-S1 disc and sacral promontory	130
49	The skin incision may be made in the midline or, optionally, as a "Pfannenstiel" incision two finger-breadths above the symphysis	131
50	Separation of the muscles with the fingers to expose the peritoneum	132
51	Proximal extension of the incision for anterior transperitoneal approach	133

Fig.	Title	Page
52	Exposure of the aortic bifurcation with	134
	the opening of the posterior peritoneum	
	to reach L5-S1 disc space	
53	Ventral and lateral thoracic and lumbar	140
	fixation spinal instrumentation (Z-Plate)	
54	Dwyer device	142
55	Zielke device	143
56	Slot-Zielke device. SP, staple plate; TR,	144
	threaded rod; DR, dual rod; CU, cross	
	connector	
57	Kaneda device	145
58	Rezaian device	146
59	Titanium mesh cage	146

Introduction

Each vertebral region has unique anatomical and functional features that result in specific injuries. The most common fractures of the spine occur in the thoracic (midback) and lumbar spine (lower back) or at the connection of the two (thoracolumbar junction). These fractures are typically caused by high-velocity accidents, such as a car crash or fall from height, Sports accident, Violent act, such as a gunshot wound, and pathological fractures (*Smith JA et al.*, 2005).

Road traffic injuries (RTIs) are a major cause of global mortality and morbidity, killing approximately 1.3 million people and injuring 20 to 50 million each year. Current estimates for Egypt show a road traffic fatality rate of 42 deaths per 100,000 population-one of the highest in the Eastern Mediterranean Region. Of these deaths, approximately 3% are the direct result of spinal fractures with spinal cord injury from trauma.

The basic types of spinal fractures include: 1) vertebral compression fractures, 2) vertebral burst fractures, and 3) fracture-dislocations, which involve significant damage to the facet joints. and acute fracture of the pars interarticularis from hyperextension. Other minor fractures consist of laminar, transverse process, or spinous process fractures. The forces responsible for spinal fractures are compression, flexion, extension, rotation, shear, or distraction forces or a combination of these mechanisms (*Patten RM et al.*, 2000).

In 1983, Denis proposed the 3-column model of the spine, which described both the functional units that contribute to the stability of the spine and the destabilizing effect of injuries to the various columns. Disruption of 2 or more columns results in an unstable configuration.

Introduction and Aim of The Work

Routine X-rays (anteroposterior and lateral views), CT and MRI are the usual methods used to diagnose spinal fractures, supplemented at times by bone scanning. MRI permits visualization of the soft tissue. Bone scans are often ordered to determine if the bone infection or bone tumor is present in other bones. Measuring bone density by DEXA scan, dual photon absorptiometry or quantitative computed tomography may be done as part of testing for osteoporosis. Various additional tests including comprehensive diagnostic laboratory testing, may be performed to identify or confirm the underlying disease process (*Carragee*, 1997).

Treatment includes nonoperative care and operative intervention indicated for patients with unstable fractures or those with neurologic deficits related to compression of the neural structures by bony elements or hematomas, partial cord injuries, or cauda equina injuries. In patients with fractures and associated spinal cord injury, the efficacy of decompressive surgery varies depending on the level and degree of injury (Woolard A et al., 2005).

Surgical management of thoracolumbar fracture has three objectives: to reduce the traumatic spine deformity, to restore spinal canal anatomy in case of medullary decompression, and to achieve consolidation by stabilizing the spine by osteosynthesis, sometimes associated to bone graft. To these ends, the approach may be posterior, anterior or combined, in whichever order.

The anterior approach was first popularized by Hodgson et al in the treatment of tuberculous spondlitis in 1959 (*Richardson WJ et al.*,1999).

Anterior approach is to be recommended on mechanical grounds, to repair anterior bone loss, and neurologically, to release medullary compression by removing intracanal bone fragments. It provides a one-shot solution: decompression by

Introduction and Aim of The Work

corporectomy, reduction by anterior spinal reopening, inter- or intrabody bone graft and, finally, plate osteosynthesis. Neurologic recovery rates are better than in posterior surgery, with better spinal profile correction (*Guigui P et al.*,1998).

The prime drawback of the anterior approach lies in its technical difficulty. Certain contra-indications, however, are to be borne in mind: morbid obesity, certain chest pathologies inducing respiratory insufficiency (thoracic involvement with pulmonary contusion in multiple trauma), pleural synechia (purulent pleurisy) or coagulation disorder (*Schultheiss M et al.*,2003).

Indications for treatment depend on the patient's neurological status, the acceptability or otherwise of the initial deformity and the degree of medullary canal stenosis, but also on the morphological and neurological evolutionary potential of the spinal lesion. The prime indication for an anterior approach in spinal traumatology is incomplete neurologic deficit related to medullary compression induced by canal stenosis which cannot be managed using any other approach (*Haas N et al.*,1991).

Introduction and Aim of The Work

Aim of the Work

To review the anterior approach in the management of dorsolumbar fractures its indications, contraindications and advantages as a one shot solution for canal decompression, reduction and stabilization.