Echocardiographically Estimated Pulmonary Capillary Wedge Pressure in Patients with Systemic Hypertension and Preserved Ejection Fraction

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented by

Ahmed Abd El Latif Gaber M.B.,B.Ch.

Under Supervision of

Prof. Dr. Amal Mohammed Al Sayed Ayoub

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Wail Mostafa El Nammas

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Viola William Keddis

Fellow of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2011

List of Contents

Title		Page
• Introduction		1
• Aim of the Wo	ork	3
• Review of Lite	erature	
• Chapter 1:	Pulmonary capillary wedge pressure	4
• Chapter 2:	Effects of systemic hypertension on the heart	28
Chapter 3:	Diastolic dysfunction	63
• Patients and	Methods	85
• Results		95
• Master Tables	5	139
♦ Discussion		144
♦ Limitations of the Study154		
• Summary		155
♦ Conclusion and Recommendations159		
♦ References		
Arabic Summary		

List of Abbreviations

Abbrev.

á	Late diastolic wave by tissue Doppler
AF	Atrial fibrillation
AR	Atrial reversal flow in pulmonary veins
ASH	American Society of Hypertension
ВМІ	Body mass index
BSA	Body surface area
CAD	Coronary artery disease
CHF	Congestive heart failure
CMR	Cardiac magnetic resonance
co	Cardiac output
CVD	Cardiovascular disease
D	Diastolic forward Pulmonary venous velocity
DBP	Diastolic blood pressure
DD	Diastolic dysfunction
DM	Diabetes mellitus
dP/dt	Rate of developing pressure
DT	Deceleration time
é	Early diastolic wave by tissue Doppler
E	Early mitral flow velocity
ECG	Electrocardiography
	End diastolic volume
EF	Ejection fraction
	Hypertrophic cardiomyopathy

List of Abbreviations (Cont.)

Abbrev.

HFPEF	. Heart failure with preserved ejection fraction
HR	. Heart rate
HTN	. Hypertension
IVRT	. Isovolumic relaxation time
IVS	. Interventricular septum
LA	.Left atrium
LAD	. Left atrial dimension
LAVI	. Left atrial volume index
LV	. Left ventricle
LVEDD	. Left ventricular end diastolic dimension
LVESD	. Left ventricular end systolic dimension
LVFP	. Left ventricular filling pressure
LVH	. Left ventricular hypertrophy
LVMI	. Left ventricular mass index
LVPW	. Left ventricular posterior wall
MI	. Myocardial infarction
MUGA	. Multi-Gated-Radionuclide Angiography
PC	. Phase-contrast
PCWP	. Pulmonary capillary wedge pressure
PFR	. Peak filling rate
PV	. Pulmonary venous
s	. Systolic forward Pulmonary venous velocity

List of Abbreviations (Cont.)

Abbrev.

SBP	. Systolic blood pressure
SD	. Standard deviation
SPECT	. Single Photon emission computed tomography
SR	. Strain rate
SRivr	. Global strain rate during isovolumic relaxation
sv	. Stroke volume
TDI	.Tissue Doppler imaging
TEE	.Transesophageal echocardiography
TPFR	. Time to peak filling rate
TTE	.Transthoracic echocardiography
Vp	. Flow propagation velocity
WHO	. World health organization
β	.The exponential stiffness constant
έ	. Strain
τ	. Time constant of LV pressure decay

List of Tables

Table No.	Title	Page
	Review	
Table (1)	Normal pressure values of LVFP	6
Table (2)	Blood pressure staging system of the JNC	29
Table (3)	Definition and classification of hypertension by ASH	34
Table (4)	Cardiovascular risk factors	35
Table (5)	Early markers of hypertensive cardiovascular disease	36
Table (6)	Hypertensive target organ damage and overt cardiovascular disease	37
	Results	
Table (1)	Showing distribution of age between the two groups	96
Table (2)	Showing distribution of sex between the two groups	97
Table (3)	Showing percentage of smokers in both groups	98
Table (4)	Showing percentage of diabetes in both groups	100
Table (5)	Showing body mass index in both groups	101
Table (6)	Showing duration of hypertension	102
Table (7)	Showing percentage of patients regular and patients not regular on hypertension treatment	103

List of Tables (Cont.)

Table No.	Title	Page
Table (8)	Showing SBP and DBP values in the two groups	. 105
Table (9)	Showing mean blood pressure values in regular and irregular patients on hypertension treatment in group I	. 107
Table (10)	Showing comparison of the two groups regarding IVS	. 109
Table (11)	Showing comparison of the two groups regarding left ventricular posterior wall thickness	. 111
Table (12)	Showing comparison of the two groups regarding LVEDD	. 113
Table (13)	Showing comparison of the two groups regarding LVESD	. 115
Table (14)	Showing comparison of the two groups regarding LVEF	. 117
Table (15)	Showing comparison of the two groups regarding LVMI	. 119
Table (16)	Showing comparison of the two groups regarding LAD	. 121
Table (17)	Showing comparison of the two groups regarding LAVI	. 123
Table (18)	Showing comparison of the two groups regarding early transmitral flow velocity (E)	. 125
Table (19)	Showing comparison of the two groups regarding early mitral annular diastolic velocity (é)	. 127

List of Tables (Cont.)

Table No.	Title	Page
Table (20)	Showing comparison of the two groups regarding (E/é)	. 129
Table (21)	Showing comparison of the two groups regarding (PCWP)	. 131
Table (22)	Showing the best PCWP cut off	. 132
Table (23)	Showing search for a possible correlation between the PCWP on one hand, and the LVMI and LAVI on the other hand	. 134
Table (24)	Showing effect of regularity on treatment of hypertension on (LVMI, LAVI & PCWP)	. 137
Table (25)	Showing correlation between duration of hypertension and LVMI, LAVI, PCWP	. 138

List of Figures

Figure No.	Title	Page
	Review	
Figure (1)	Normal pulmonary capillary wedge pressure waveform and normal left atrial pressure waveform recorded from fluid-filled catheter systems in a human	. 9
Figure (2)	Measurement of left atrial volume from the biplane method of discs (modified Simpson's rule)	. 16
Figure (3)	Circumferential SR and strain by phase contrast CMR from a normal subject and a subject with LVH	. 27
Figure (4)	The law of laplace in LVH	. 45
Figure (5)	Pathophysiology of LVH & hypertensive heart disease	. 48
Figure (6)	Relationships between LV pressure and volume during the four phases of diastole	. 64
Figure (7)	Patterns of diastolic dysfunction	. 71
Figure (8)	Global SR signal and mitral velocity tracings by color tissue Doppler from the septal and lateral side of the mitral annulus	. 77
Figure (9)	Speckle tracking of LV myocardium	. 78

List of Figures (Cont.)

Figure No.	Title	Page
	Results	
Figure (1)	Showing distribution of age between the two groups	. 96
Figure (2)	Showing distribution of sex between the two groups	. 97
Figure (3)	Showing percentage of smokers in both groups	. 99
Figure (4)	Showing percentage of diabetes in both groups	. 100
Figure (5)	Showing body mass index in both groups	. 101
Figure (6)	Showing percentage of patients regular and patients not regular on hypertension treatment	. 103
Figure (7)	Showing SBP and DBP values in the two groups	. 105
Figure (8)	Showing mean blood pressure values in regular and irregular patients on hypertension treatment in group I	. 107
Figure (9)	Showing comparison of the two groups regarding IVS	. 109
Figure (10)	Showing comparison of the two groups regarding left ventricular posterior wall thickness	. 111
Figure (11)	Showing comparison of the two groups regarding LVEDD	. 113

List of Figures (Cont.)

Figure No.	Title Page
Figure (12)	Showing comparison of the two groups regarding LVESD 115
Figure (13)	Showing comparison of the two groups regarding LVEF
Figure (14)	Showing comparison of the two groups regarding LVMI
Figure (15)	Showing comparison of the two groups regarding LAD 121
Figure (16)	Showing comparison of the two groups regarding LAVI
Figure (17)	Showing comparison of the two groups regarding early transmitral flow velocity (E)
Figure (18)	Showing comparison of the two groups regarding early mitral annular diastolic velocity (é)
Figure (19)	Showing comparison of the two groups regarding (E/é)
Figure (20)	Showing comparison of the two groups regarding (PCWP)
Figure (21)	Showing the best PCWP cut off 133
Figure (22)	Showing the correlation between PCWP & LVMI in group I

Acknowledgment

Thanks first and last for the Almighty Allah for blessing me through this work until it has reached its end, as a little part of His generous help throughout my life.

I would like to express my deep gratitude to **Professor Doctor/Amal Mohamed Elsayed Ayoub**, Professor of Cardiology, Ain Shams University, for her extensive help, generous effort, meticulous discussion and unlimited support. I consider myself very fortunate to work under her supervision.

I wish to express my deep gratitude and profound appreciation to **Doctor / Wail Mostafa El Nammas**, Assistant Professor of Cardiology, Ain Shams University, for his continuous encouragement, patience, support and valuable instructions throughout this work.

I wish to express my deep gratitude and profound appreciation to **Doctor / Viola William Keddias**, Fellow of Cardiology, for her support, help, kind supervision and continuous encouragement to have this work fulfilled.

Finally, I would like to thank my family, especially my father, my mother and my wife, for their help and support. Without their help, this work could not have been accomplished...

Ahmed Abd Al Latif Gaber

Introduction

Systemic hypertension clearly increases the risk of systolic and/or diastolic heart failure (Gaddam et al., 2009). Left ventricular dysfunction: as an early measure of myocardial end organ damage, is commonly associated with hypertension and may well precede the development of left ventricular hypertrophy in hypertensive patients (Verma and Solomon, 2009). About half of the patients presenting with heart failure have a normal ejection fraction, a clinical syndrome that is commonly referred to as heart failure with preserved ejection fraction (HFPEF) or diastolic heart failure and is commonly associated with impaired LV relaxation and increased diastolic stiffness. Diastolic dysfunction and HFPEF are commonly associated with advancing age and hypertension. Hypertension control appears to be the most effective strategy in improving diastolic function and possibly for reducing the morbidity and mortality associated with HFPEF (Verma and Solomon, 2009).

Doppler echocardiography is widely used for the non invasive assessment of diastolic filling of the left ventricle (*Nishimura and Tajik*, 1997). Analysis of the mitral inflow velocity curve has provided useful information for determination of filling pressures and prediction of prognosis in selected patients. However, mitral flow is dependant on multiple interrelated factors, including the rate and extent of

ventricular relaxation, suction, atrial and ventricular compliance, mitral valve hemodynamics, and left atrial pressure (*Nishimura and Tajik, 1997; Choong et al., 1987*). These factors may have confounding effects on the mitral inflow; thus, It has not be been possible to determine diastolic function from the mitral flow velocity curves in many subsets of patients (*Yamamoto et al., 1997*).

Tissue Doppler imaging (TDI) of mitral annular motion has been proposed to correct for the influence of myocardial relaxation on trans-mitral flow. This has been shown to be an excellent predictor of diastolic filling in subsets of patients (Sohn et al., 1997). The ratio of early transmitral flow velocity (E) to early mitral annular diastolic velocity (é) was even used to estimate the pulmonary capillary wedge pressure, the correlation being validated against invasive catheter measurements (Ommen et al., 2000). In a prospective study design, we sought to evaluate the echocardiographically estimated pulmonary capillary wedge pressure (PCWP) in a series of hypertensive patients with preserved ejection fraction.

Aim of the Work

We aimed at exploring the range of the echocardiographically estimated pulmonary capillary wedge pressure in a series of hypertensive patients with preserved ejection fraction, in comparison with a normotensive group as a control.