Prevalence and Morphology of Coronary Artery Ectasia with Dual-source CT Coronary Angiography

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

 $\mathcal{B}y$

Amr AbdAlwahab Ismail

Under supervision of

Prof.Dr. Mona Mostafa Rayan

Professor of Cardiology

Faculty of Medicine- Ain Shams University

Dr.Sameh Samir

Lecturer of Cardiology

Faculty of Medicine- Ain Shams University

Faculty of Medicine

Ain Shams University

2014

Acknowledgment

Fist thanks to **Allah**t whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Professor Dr.

Mona Mostafa Rayan, professor of Cardiology for her meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Dr. Sameh Sameer, Lecturer of Cardiology** for his great help, outstanding support, active participation and guidance.

List of Contents

Title	Page
• Introduction	1
Aim of the Work	6
♦ Review of Literature:	
■ Chapter 1: ISCHEMIC HEART DISEASES	7
• Chapter 2: CORONARY ARTERY ECTASIA	31
 Chapter 3: Coronary Imaging Modalities Chapter 4: Role of Multi-Slice Computed Tomography in Detection of different forms of Coronary Ectasia 	85
• Patients and Methods	102
• Results	112
• Discussion	140
• Summary	151
• Conclusion	154
• Recommendations	155
• References	156
Arabic Summary	

List of Figures

Fig. No.	Title Page	е
Figure (1)	Typical Progression of Coronary Atherosclerosis	11
Figure (2)	Characteristics of Atherosclerotic Plaques Associated with Various Presentations of Coronary Artery Disease	17
Figure (3)	Coronary artery aneurysm compared with coronary artery ectasia	4
Figure (4)	Anatomy of Coronary Arteries6	8
Figure (5)	Conventional invasive coronary angiographic image compared with coronary CT angiographic images	38
Figure (6)	Atherosclerotic Ectasia9	2
Figure (7)	Coronary Ectasia in	
	Kawasaki Disease9	94
Figure (8)	Compensatory Coronary Artery Ectasia	96
Figure (9)	Coronary Ectasia in Patient with ALCAPA Syndrome9	8
Figure (10)	Coronary Ectasia in Patient with Takayasu's arteritis10	00
Figure (11)	Age and sex distribution in patient who had CTCA11	
Figure (12)	Risk factors distribution in patients who had CTCA11	
Figure (13)	Coronary conditions according to CTCA findings11	17

Figure (14)	The significance of obstructive coronaropathy118
Figure (15)	Number and percentage of patients in both groups120
Figure (16)	Gender distribution in both groups122
Figure (17)	Age distribution in both groups122
Figure (18)	Risk factors distribution among patients in both groups124
Figure (19)	Coronary arteries that showed stenotic lesions according to CTCA findings in both groups127
Figure (20)	The incidence of Diabetes mellitus among the three subgroups131
Figure (21)	CTCA image of 54 years male, known diabetic and dyslipidemic,, with no past history of cardiac troubles, complaining from Atypical chest pain, CTCA showed atherosclerotic coronaries and fusiform ectasia at RCA segment with no stenotic lesions
Figure (22)	Incidence of ectasia among the coronary arteries135
Figure (23)	Incidence of Ectasia & aneurysm i.e. Ectatic ratio, among the coronary arteries
Figure (24)	Morphological features of ectasia among the coronary arteries136
Figure (25)	Distributive Pattern of ectasia among the coronary arteries)136

List of Tables

Tab. No.	Title Pag	;e
Table (1)	Symptoms of Angina14	
Table (2)	Classification of Severity of Angina14	•
Table (3)	Comparative incidence of ectasia at coronary angiography in different studies	
Table (4)	Classification of Coronary Artery Dilatation39	
Table (5)	Potential Causes of Coronary Artery Dilatation and Their Underlying Pathogenic Mechanisms	•
Table (6)	Recommended therapeutic agents for Coronary Artery Ectasia63	
Table (7)	Age and Sex distribution in all patients112	
Table (8)	Risk factors distribution in all patients114	
Table (9)	History of coronary artery disease115	
Table (10)	Main complaint of all patients115	
Table (11)	Coronary arteries condition according to CTCA117	
Table (12)	Number and percentage of patients in both groups119	•
Table (13)	Age and gender distribution in both groups	
Table (14)	Risk factors distribution among patients in both groups123	

List of Tables (Cont.)

Tab. No.	Title Page
Table (15)	History of coronary artery disease among both groups124
Table (16)	Main complaint of patients among both groups125
Table (17)	Coronary conditions according to CTCA findings in both groups
Table (18)	Age and gender distribution among patients in Group (I) i.e. with coronary artery ectasia129
Table (19)	Risk factors distribution and complaint among patients in the three subgroups130
Table (20)	Main complaint of patients among the three subgroups132
Table (21)	Frequency of affection of coronary arteries with morphological and distributive features133
Table (22)	Multivariate logistic regression analysis for predictors of ectasia137

LIST OF ABBREVIATIONS

Abb.	Meaning
AAA	Abdominal Aortic Aneurysm
ACS	Acute coronary syndrome
ALP	Apolipoprotein
APS	Antiphospholipid syndrome
AS	Ankylosing spondylitis
ВМІ	Body mass index
CAA	Coronary artery aneurysm
CABG	Coronary artery bypass graft
CAD	Coronary artery diseases
CAE	Coronary artery ectasia
CCA	Catheter Coronary Angiography
CREST	Calcinosis, Raynaud phenomenon, Esophageal motility disorders, Sclerodactyly, and Telangiectasia
CRP	C-reactive protein
CTCA	Computed tomographic coronary angiography
CVA	Cerebrovascular accident
CVD	Cerebrovascular diseases
DM	Diabetes mellitus

LIST OF ABBREVIATIONS (CONT.)

Abb.	Meaning
DSL	Dyslipidemia
GCA	Giant cell arteritis
HTN	Hypertension
ICAM-1	Intercellular adhesion molecule 1
IHD	Ischemic heart disease
IL-6	Interleukins-6
LAD	Left anterior descending coronary artery
LCX	Left circumflex coronary artery
LM	Left main coronary artery
MI	Myocardial infarction
MMP	Matrix metalloproteinase
MPA	Microscopic polyangiitis
MPI	Myocardial Perfusion Imaging
MRA	Magnetic resonance arteriography
PAD	Peripheral arterial diseases
PAN	Polyarteritis nodosa
PCI	Percutaneous coronary intervention
PET	Positron emission tomography
RA	Rheumatoid arthritis
RCA	Right coronary artery

LIST OF ABBREVIATIONS (CONT.)

SLE	Systemic lupus erythematosus
SPECT	Single photon emission computed tomography
SPSS	Statistical package for special science
TFC	TIMI Frame Count
TIA	Transient Ischemic Attack
VCAM-1	Vascular cell adhesion molecule 1

Introduction

Coronary artery ectasia (CAE) has been observed by pathologists and cardiologists for more than two centuries. As its first description by **Morgagni in 1761**this not so infrequent form of coronary artery disease has puzzled the clinicians regarding its cause, clinical squeal and treatment.

Coronary artery ectasia is defined as a localized or diffuse non-obstructive lesion of the epicardial coronary arteries with a luminal dilation exceeding 1.5 fold the diameter of the normal adjacent arterial segment. Falsetti and Carroll further subdivided CAE into simple ectasia (a 1.5–2-fold segment dilation) and an aneurysm (a >2-fold segment dilatation when compared to a normal segment) (Falsetti et al., 1976).

The main coronary angiographic characteristics of CAE are impaired coronary blood flow, delayed antegrade coronary dye filling, segmental back flow phenomenon (milking phenomenon) and stasis with local deposition of dye in dilated coronary segments (*Krueger et al.*, 1999).

The clinical relevance and the pathophysiology of CAE have received increasing attention in the last decades. The exact mechanism of its development is unknown, but evidence suggests a combination of genetic predisposition, common risk

factors for coronary artery disease and abnormal vessel wall metabolism.

Functional loss of the musculoelastic components of the coronary artery media is considered the predominant aspect in the pathogenesis of CAE. (*Befeler et al.*, 1977) Due to the frequent coexistence of CAE with Coronary artery disease (CAD), and as the histopathological characteristics are similar to coronary atherosclerosis, it is not surprising that the hypotheses for the origin of CAE revolve around the vascular endothelium and the biological properties of the arterial wall. However, there are some differences in the proven association between CAE and CAD.

In addition *non-atherosclerotic forms* of CEA have been described with an intact vessel intima, but with extensive media degeneration (smooth muscle cell replacement by hyalinized collagen) (*Rath et al.*, 1985; *Mattern et al.*, 1972).

The clinical course of CAE mainly depends on whether it is isolated or coexisted with CAD. Patients with coronary ectasia and coronary obstructive disease are similar in every aspect to those with similar coronary obstructive disease but without ectasia during follow-up of 5 years(*Swaye et al.*, 1983).

Pure ectasia is not completely innocuous, as there is an appreciable incidence of previous myocardial infarction and angina (*Demopoulos et al.*, 1997). Ectatic arteries have been shown to be more prone to spasm (*Suzuki et al.*, 1994),

exercise induced myocardial ischemia (*Kruger et al., 1999*), thrombosis (*Perlman et al., 1989*), dissection (*Huikuri et al., 1991*), or rupture (*Satoda* et al., 1998). Moreover, the severity of myocardial ischemia has been significantly correlated with the degree of luminal enlargement(*Kruger et al., 1999*).

The detection of CAE is important as patients might benefit from medical treatment or surgery (*Ramappa et al.*, 2007). The latter treatment is recommended in patients with CAE complications and for saccular CAE because of the higher risk of thrombosis and rupture.

With the widespread use of coronary angiography the incidence of CAE in patients undergoing this diagnostic procedure was clearly delineated. CAE has been found in 1–5% during coronary angiography (*Swaye et al.*, 1983; *Demopoulos et al.*, 1997; *Markis et al.*, 1976). In the largest series from the CASS registry found CAE in 4.9% of more than 20 000 coronary angiograms they reviewed (*Swaye et al.*, 1983). The incidence of CAE in an Indian patient cohort with ischemic heart disease has been reported to exceed 10%. It is reasonable to expect that the incidence of CAE reported in the literature overestimates the true frequency in the general population, since the standard for diagnosis of CAE is coronary angiography, and patients referred to coronary angiography are pre-selected.

In order to clarify anatomical variations, **Markis** proposed a classification of CAE based on the extent of ectatic involvement. In decreasing order of severity, diffuse ectasia of two or three vessels was classified as **Type I**, diffuse disease in one vessel and localized disease in another vessel as **Type II**, diffuse ectasia of one vessel only as **Type III**, and localized or segmental ectasia as **Type IV** (*Markis et al.*, 1976).

In addition, CAE has been classified according to anatomical shape of the ectatic segment in fusiform or saccular type. (*Befeler et al.*, 1977).

Older studies preferred the term 'coronary aneurysm' for the more discrete secular type ectatic segments, reserving the term 'ectasia' for the fusiform diffuse vessel involvement(*Markis et al.*, 1976; *Tunick et al.*, 1990).

For the last four decades, since **Daoud in 1963** stated 'indeed no case of coronary aneurysm has yet been diagnosed antemortem', coronary angiography was the gold standard for the assessment of CAE.

Recent advances in multi-detector row computed tomography coronary angiography (CTCA) have continuously increased its role in non-invasive imaging of the coronary arteries. The most recent technical innovation is dual-source CT which is characterized by a high and consistent temporal resolution of 83ms through simultaneous acquisition of data with two X-ray tubes and detectors(*Leber et al.*, 2005).