

Fungal Infection in Critically ill patients

Essay

Submitted for partial fulfillment for the Master degree In general Intensive Care

By **Diaa El-Din Ibrahim Shehatah**

M.B.B.Ch.

Faculty of medicine- Zagazig University

Under supervision of

Prof. Mohammed Abd El-khalek Mohammed Ali

Professor of anesthesiology and general intensive care medicine Faculty of medicine- Ain-Shams University

Dr. Mahmoud Hassan Mohammed

Lecturer of anesthesiology and general intensive care medicine Faculty of medicine- Ain-Shams University

Dr. Doaa Mohammed Kamal El-Din

Lecturer of anesthesiology and general intensive care medicine Faculty of medicine- Ain-Shams University

> Faculty of medicine Ain-Shams University 2014

جامعة عين شمس قسم التخدير والرعاية المركزة

العدوى الفطرية في مرضى الرعاية المركزة

رسالة مقدمة من

الطبيب/ ضياء الدين إبراهيم شحاته بكالوريوس الطب والجراحة- جامعة الزقازيق توطئة للحصول على درجة الماجستير في الرعاية المركزة العامة

تحت إشراف

أ. د / محمد عبدالخالق محمد علي

أستاذ التخدير والرعاية المركزة العامة كلية الطب - جامعة عين شمس

د / محمود حسن محمد

مدرس التخدير والرعاية المركزة العامة كلية الطب - جامعة عين شمس

د / دعاء محمد كمال الدين

مدرس التخدير والرعاية المركزة العامة كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2014

Acknowledgement

First and foremost, praise and thanks must be to ALLAH who guides me throughout life.

I would like to express my deepest gratitude and thanks to **Professor Mohammed Abd El-khalek Mohammed Ali** Professor of anesthesiology and general intensive care medicine, Faculty of Medicine, Ain Shams University for his kind continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also I am really deeply grateful to *Dr. Mahmoud Hassan Mohammed* Lecturer of anesthesiology and general intensive care medicine, Faculty of medicine, Ain-Shams University for his great help, valuable time, careful supervision and continuous advices and his efforts that made this work come to light.

I would like to express my cordial and sincere gratitude to

Dr. Doaa Mohammed Kamal El-Din Lecturer of anesthesiology and general intensive care medicine, Faculty of medicine, Ain-Shams University for her valuable advice. Helpful suggestions and support.

I am really thankful to every one who took part in exhibiting this work to light.

Diaa Ibrahim Shehatah

List of Abbreviations

Abbrev	
A	Aspergillus
AFLP	amplified fragment length polymorphism
AmB	Amphotrecin B
BDG	B-D-glucan
BHI	brain heart infusion
BSI	Blood stream infection
BUN	Blood urea nitrogen
С	Candida
CMV	Cytomegalovirus
CSF	cerebrospinal fluid
CVC	central venous catheter
DNA	Deoxyribonucliec acid
EIA	enzyme immunoassay
ELISA	Enzyme linked immunosorbent assay
F	Fusarium
HAART	highly active antiretroviral therapy
HCW	Health care worker
HEPA	High-efficiency particulate absorption
HIV	human immunodeficiency virus
HSCT	haematopoietic stem cell transplant
IA	Invasive Aspergillosis
IC	Invasive Candidiasis
ICU	intensive care unit
IgG	Immunoglobulin G
IL	Interleukin
IPA	Invasive Pulmonary Aspergillosis
L-AmB	Liposomal amphotrecin B
MICs	Minimum inhibitory concentration
NCA	Non Candida albicans
NFI	Nasocomial fungal infection
OPC	oropharyngeal candidiasis
PAS	Periodic acid-Schiff
PCP	Pneumocystis pneumonia
PCR	Polymerase Chain Reaction
RFLP	restriction fragment length polymorphism
SCID	severe combined immune deficiency
SSCP	single strand conformational polymorphism
Th	T-helper
UTI	Urinary tract infection
VVC	vulvovaginal candidiasis
	-

List of Tables

Table I:Types of Causative fungal organisms in ICU.	8
Table II: Risk factors of invasive candidiasis and aspergillosis among patients admitted to ICUs.	16
Table III: Doses of echinocandin drugs in ICU.	81
Table IV: Prophylaxis and treatment of invasive fungal infections in intensive care unit (ICU) patients.	89

List of figures

Figure 1: Yeast cells reproduction	6
Figure 2:Microscopic morphology of Candida species	10
Figure 3: Aspergillus species	28
Figure 4 :Chest CT scan showing the halo sign	
Figure 5: Fusarium species	37
Figure 6: Creptococcus species	41
Figure 7: Pneumocystis species	42
Figure 8: Mucormycosis Species	45
Figure 9: Phaeohyphomycosis Species	46
Figure 10 : TrichosporoncutaneumSpecies	47
Figure 11: Malassezia Species	48
Figure 12 : ScedosporiumapiospermumSpecies	50
Figure 13: Paecilomyces Species	51
Figure 14: AcremoniumSpecies	52

Acknowledgement

First and foremost, praise and thanks must be to ALLAH who guides me throughout life.

I would like to express my deepest gratitude and thanks to *Professor Mohammed Abd El-khalek Mohammed Ali* Professor of anesthesiology and general intensive care medicine, Faculty of Medicine, Ain Shams University for his kind continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also I am really deeply grateful to *Dr. Mahmoud Hassan Mohammed* Lecturer of anesthesiology and general intensive care medicine, Faculty of medicine, Ain-Shams University for his great help, valuable time, careful supervision and continuous advices and his efforts that made this work come to light.

I would like to express my cordial and sincere gratitude to

Dr. Doaa Mohammed Kamal El-Din Lecturer of anesthesiology and general intensive care medicine, Faculty of medicine, Ain-Shams University for her valuable advice. Helpful suggestions and support.

I am really thankful to every one who took part in exhibiting this work to light.

Diaa Ibrahim Shehatah

List of Abbreviations

Abbrev	
Abbiev	A cm amaillus
AFLP	Aspergillus
	amplified fragment length polymorphism Amphotrecin B
AmB BDG	
	B-D-glucan
BHI	brain heart infusion
BSI	Blood stream infection
BUN	Blood urea nitrogen
CMA	Candida
CMV	Cytomegalovirus
CSF	cerebrospinal fluid
CVC	central venous catheter
DNA	Deoxyribonucliec acid
EIA	enzyme immunoassay
ELISA	Enzyme linked immunosorbent assay
F	Fusarium
HAART	highly active antiretroviral therapy
HCW	Health care worker
HEPA	High-efficiency particulate absorption
HIV	human immunodeficiency virus
HSCT	haematopoietic stem cell transplant
IA	Invasive Aspergillosis
IC	Invasive Candidiasis
ICU	intensive care unit
IgG	Immunoglobulin G
IL	Interleukin
IPA	Invasive Pulmonary Aspergillosis
L-AmB	Liposomal amphotrecin B
MICs	Minimum inhibitory concentration
NCA	Non Candida albicans
NFI	Nasocomial fungal infection
OPC	oropharyngeal candidiasis
PAS	Periodic acid-Schiff
PCP	Pneumocystis pneumonia
PCR	Polymerase Chain Reaction
RFLP	restriction fragment length polymorphism
SCID	severe combined immune deficiency
SSCP	single strand conformational polymorphism
Th	T-helper
UTI	Urinary tract infection

List of contents

List of Abbreviations.	(i)
List of Tables.	(ii)
List of Figures.	(ii)
Aim of the Work.	1
Introduction.	3
Fungal Infection in ICU.	6
Laboratory Diagnosis of Fungal Infection.	55
Treatment of Fungal Infection.	76
Prevention and Control of Fungal Infection.	90
Summary.	96
References.	99
Arabic Summary.	١

List of Tables

Table I: Types of Causative fungal organisms in ICU.	9
Table II: Risk factors of invasive candidiasis and aspergillosis among patients admitted to ICUs.	16-17
Table III: Doses of echinocandin drugs in ICU.	82
Table IV: Prophylaxis and treatment of invasive fungal infections in intensive care unit (ICU) patients.	89

List of figures

Figure 1: Yeast cells reproduction	7
Figure 2: Microscopic morphology of Candida species	10
Figure 3: Aspergillus species	28
Figure 4: Chest CT scan showing the halo sign	37
Figure 5: Fusarium species	38
Figure 6: Creptococcus species	42
Figure 7: Pneumocystis species	44
Figure 8: Mucormycosis Species	47
Figure 9: Phaeohyphomycosis Species	48
Figure 10: Trichosporon cutaneum Species	49
Figure 11: Malassezia Species	50
Figure 12: Scedosporium apiospermum Species	52
Figure 13 : Paecilomyces Species	53
Figure 14: Acremonium Species	54

Aim of the Work

Aim of the Work

The aim of this essay is to throw lights on the incidence and epidemiology of fungal infection among the intensive care unit patients as well as the nature of fungal infection regarding its presentation and clinical picture, diagnosis and management.

Introduction

Introduction

Critical care medicine has advanced greatly in the past few decades. Patients with complex medical and surgical disorders are surviving longer due to equally complex medical and surgical interventions. These often involve the "collateral damage" of circumventing the body's normal defense mechanisms (Zaragoza et. al; 2006).

Infections acquired during a hospital stay called nosocomial infections. These infections can be bacterial, viral, and fungal or even parasitic. Advances in medicine by use of newer technologies and therapies have helped to treat patients suffering previously devastating or fatal diseases have resulted in proliferation of a these successes immune-compromised, ill severly hospitalized population. These patients patient highly are nosocomial infections susceptible to caused such fungi that organisms as were previously considered to be of low virulence or non-pathogenic (Garbino et. al; 2004).