

Preparation and Characterization of Alumina-Silica and Alumina-Silica-Magnesia Nano-composites from Industrial Wastes for Advanced Applications

Thesis For

Ph.D. Degree in Chemistry

To

Chemistry Department, Faculty of Science, Ain Shams University By

Moustafa Mohammed Saad Moustafa Sanad
M. Sc. in Chemistry, 2009

Preparation and Characterization of Alumina-Silica and Alumina-Silica-Magnesia Nano-composites from Industrial Wastes for Advanced Applications

Thesis

Submitted in the Partial Fulfillment
For
Ph.D. Degree in Chemistry
To
Chemistry Department, Faculty of Science,
Ain Shams University

By

Moustafa Mohammed Saad Moustafa Sanad

M. Sc. in Chemistry, 2009

Under the Supervision of

Prof. Dr. Mohamed F. El – Shahat

Prof of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. El-Sayed A. Abdel-Aal

Head of Minerals Technology Department, Central Metallurgical R&D Institute, (CMRDI), Helwan

Prof. Dr. Mohamed M. Rashad

Head of Electronic and Magnetic Materials Division, Central Metallurgical R&D Institute, (CMRDI), Helwan

Preparation and Characterization of Alumina-Silica and Alumina-Silica-Magnesia Nano-composites from Industrial Wastes for Advanced Applications

Thesis For

Ph.D. Degree in Chemistry
To
Chemistry Department, Faculty of Science,
Ain Shams University

 $\mathbf{B}\mathbf{y}$

Moustafa Mohammed Saad Moustafa Sanad

M. Sc. in Chemistry, 2009

Under the Supervision of

Prof. Dr. Mohamed F. El – Shahat

Professor of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. El-Sayed A. Abdel-Aal

Head of Minerals Technology Department, Central Metallurgical R&D Institute, (CMRDI), Helwan

Prof. Dr. Mohamed M. Rashad

Head of Electronic and Magnetic Materials Division, Central Metallurgical R&D Institute, (CMRDI), Helwan

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Derbalah

LIST OF ABBREVIATIONS

Symbol	Definition
SDS	Sodium dodecyl sulfate
CTAB	Cetyl trimethyl ammonium bromide
PVA	Poly vinyl alcohol
PL	Photoluminescence
DTA	Differential thermal analysis
DSC	Differential scanning calorimetry
ICP	Inductively Coupled Plasma Spectrophotometer
XRD	X-ray diffraction analysis
XRF	X-ray fluorescence analysis
SEM	Scanning electron microscope
TEM	Transmission electron microscope
$S_{ m BET}$	Specific surface area
rpm	Rotations per minute
х	Ratio of dopant ion
θ	X-Ray diffraction angle
β	Full width at half-maximum of X-ray peak
D	Average crystalline size
λ	X-ray wavelength
E _a	Apparent activation energy
T_p	Crystallization peak temperature
R	Gas constant
Φ	Heating rate per minute

List of Abbreviations

Symbol	Definition
ΔŢ	Full width at half maximum of the exothermic peak
n	Shape factor (Avrami constant)
ρ	Electrical resistivity
έ	Real dielectric permittivity
" ε	Imaginary part dielectric permittivity
tanδ	Dielectric loss factor
HV	Vickers microhardness
DC	Direct current
AC	Alternating current
ICDD	International Center for Diffraction Data
V	Volume of unit cell
a, b, c	Lattice parameters
ppm	Part per million
GPa	Giga Pascal
MHz	Megahertz
GHz	Gigahertz
ALW	Washing liquor of Al etching
ALD	Leaching liquor of Al dross
SR	Leaching liquor of silica wastes
SF	Leaching liquor of silica fume
GB	Leaching liquor of ground bricks of lining furnaces

LIST OF FIGURES

Figure	Page
1. Natural mullite, (a) Thin section micrograph of the lava	2
of the Ben More volcano, (b) SEM of mullite needles	
grown hydrothermally in small druses of volcanic rocks of	
the Eifel mountain	
2. Number of publications dealing primarily with mullite	2
and mullite ceramics which appeared between 2000 and	
2013 (date of search 15 th May 2013)	
3. Technical-grade mullites, (a) Czochralski-grown	5
mullite single crystals of 2/1-composition	
(b) Microstructures of fully dense polycrystalline mullite	
ceramics with different bulk Al ₂ O ₃ compositions	
4. Examples for technical applications of monolithic	6
mullite ceramics (a) Fused-mullite refractory bricks	
(b) Sinter-mullite-based conveyor belt for continuous	
charging of annealing furnaces (c) Optically translucent	
mullite compunds	
5. Mullite coatings. Examples of technical applications,	7
(a) Panel for a re-entry space vehicle (b) Microstructure	
of a vacuum plasma mullite-coated C/C-SiC composite	
6. Mullite matrix composites. Examples of technical	8
applications, (a) Components and structures made of	
mullite fiber-reinforced mullite matrix composites	

(b) Segmented combustor tiles made of WHIPOX for the	8
use as thermal protection systems in combustors of	
stationary and aircraft gas turbine engines	
7. Examples of cordierite kiln furniture for temperature	11
below 1200°C, mullite-cordierite composite kiln furniture	
for temperature below 1350°C and mullite-corundum	
composite kiln furniture for temperature below 1400°C	
8. Different shapes and sizes of oil refining cordierite	12
ceramic honeycomb filter plate	
9. Number of publications dealing primarily with cordierite	13
and cordierite ceramics which appeared between 2000 and	
2013 (date of search 15 th May 2013)	
10. Phase diagram for the alumina-silica system	14
11. MgO-Al ₂ O ₃ -SiO ₂ Ternary phase diagram	16
12. XRD pattern of aluminum dross sample	65
13. Effect of annealing temperature on Al extraction	66
14. Effect of mole ratio Na ₂ O: (Al ₂ O ₃ ,SiO ₂) on	66
Al extraction	
15. Effect of annealing time on Al extraction	67
16. XRD pattern of silica fume sample	70
17. Effect of NaOH:SiO ₂ mole ratio on Si extraction at	71
4 h and 100°C	
18. Effect of reaction temperature on Si extraction at	71
4 h and stoichiometry 3	

19. Effect of reaction time on Si extraction at 100°C and	72
stoichiometry 3	
20. XRD pattern of acidic silica effluents sample	74
21. Effect of annealing temperature on Al and Si	75
extraction	
22. Effect of stoichiometric ratio Na ₂ O: (Al ₂ O ₃ , SiO ₂) on	75
Al and Si extraction	
23. Effect of annealing time on Al and Si extraction	76
24. XRD patterns of mullite precursors prepared at	79
different pH values annealed at 1200 °C for 3 h	
25. XRD patterns of mullite precursor annealed at various	80
temperatures (900-1400°C) for 3 h	
26. XRD patterns of mullite precursors annealed at	81
1000°C for various annealing times	
27. XRD patterns of mullite precursors annealed at	82
1000°C for 1 h in presence and absence of surfactants	
28. DTA Thermograms of prepared mullite precursors	83
measured at various heating rates	
29. Kissinger plot for the activation energy determination	84
of mullite crystallization	
30. SEM micrographs of synthesized mullite	85
nanoparticles at (a) 1000°C, (b) 1200°C; (c) 1400°C	
[Magnification X10,000] for 3 h	

31. TEM micrographs of synthesized mullite	86
nanoparticles at (a) 1000°C, (b) 1200°C, (c) 1400° for 3 h	
32. SEM micrographs of synthesized mullite	87
nanoparticles at 1000°C for 3 h (a) in absence of	
surfactant, (b) in presence of 1000 ppm CETAB	
[Magnification X15,000]	
33. TEM micrographs of synthesized mullite	88
nanoparticles in presence of 1000 ppm (a) CTAB and (b)	
SDS and (c) in absence of surfactant	
34. Dependence of dielectric permittivity (έ) of mullite	92
samples on heating rate sintered at (a) 1300°C (b) 1400°C	
(c) 1500°C (d) 1600°C	
35. Effect of frequency region on dielectric properties of	93
sintered mullite ceramics at various heating rates	
(a) 5°min ⁻¹ (b) 30°min ⁻¹	
36. Dependence of dielectric loss tangent ($tan\delta$) of mullite	93
samples on heating rate and sintering temperature at	
1.5 GHz	
37. Effect of heating rate on linear shrinkage of sintered	94
mullite samples	
38. Effect of heating rate on sintering properties of	95
mullite samples sintered at various temperatures for 5 h	
39. XRD patterns of mullite precursors prepared from	97

different raw materials	
40. XRD patterns of un-doped and doped mullite	101
nanoparticles annealed at 1300 °C for 2 h	
41. DTA curves of metal ion doped mullite precursors	103
42. TEM micrographs of nanocrystalline o-mullite	104
(a) undoped, (b) 0.5% Y ³⁺ ion doped mullite,	
(c) 0.5% Gd ³⁺ ion doped mullite, (d) 0.5% La ³⁺ ion doped	
mullite	
43. FT-IR spectra of the produced undoped and doped	105
mullite nanoparticles annealed at 1300 °C for 2 h	
44. Photoluminescence emission spectra of produced	107
undoped and doped mullite nanoparticles at (λ_{Ex} =254 nm)	
45. Variation of the dielectric permittivity with the type of	109
dopant ion in o-mullite ceramics. Inset change in	
dielectric loss with the type of dopant ion	
46. XRD patterns of cordierite precursor annealed at	111
various temperatures (1000-1300°C) for 3 h	
47. XRD patterns of cordierite precursors annealed at	112
1200°C for various annealing times	
48. XRD patterns of cordierite precursors annealed at	113
1300°C for 3 h in presence and absence of surfactants	
49. DTA Thermograms of prepared cordierite precursors	114
measured at various heating rates	
50. Kissinger plot for the activation energy determination	115

17
10
10
1.0
1.0
18
20
21
22
23
25

59. XRD patterns of un-doped and doped cordierite	128
nanoparticles annealed at 1300 °C for 2 h	
60. DTA curves of metal ion doped cordierite precursors	130
of additives	
61. SEM micrographs of cordierite ceramics sintered at	131
1300 for 3 h (a) undoped sample, (b) Mo ⁶⁺ ion doped	
sample, (c) Sr^{2+} ion doped sample, (d) Zr^{4+} ion doped	
sample	
62. FT-IR spectra of the produced undoped and doped	133
cordierite nanoparticles annealed at 1300 °C for 2 h	
63. Variation of the dielectric permittivity with the type	136
of dopant ion in cordierite ceramics	

LIST OF TABLES

Table	Page
1. Thermo-mechanical properties of mullite ceramics	4
and other advanced oxide ceramics	
2. Main physical properties of cordierite	9
3. Chemical analysis of the spent washing liquor of	63
Al etching	
4. Chemical analysis of original aluminum dross	64
5. Optimum conditions for processing of aluminum	68
dross	
6. Chemical analysis of original fumed silica	69
7. Optimum conditions for processing of silica fume	72
8. Chemical analysis of washed sample of the acidic	73
silica effluents	
9. Optimum conditions for processing of acidic silica	77
effluents	
10. Kinetics parameters for crystallization of mullite	84
precursors annealed at 1200°C with different	
heating rates	
11. Textural and optical properties of mullite	89
precursors annealed at various temperatures for 3 h	
12. Textural and optical properties of mullite	89
precursors in presence and absence of surfactants	

List of Tables

13. Effect of heating rate on DC electrical resistivity	90
of mullite samples	
14. Effect of heating rate on microhardness of	96
sintered mullite samples	
15. Effect of precursor's raw materials on crystallite	98
size of mullite nanoparticles synthesized at 1200°C	
for 3 h	
16. Effect of precursor's raw materials on DC and AC	99
electrical properties of mullite ceramics sintered at	
1300°C for 5h	
17. Effect of precursor's raw materials on	99
microhardness of sintered mullite ceramics at	
1300°C for 5h	
18. Lattice parameters of undoped and doped mullite	102
samples annealed at 1300 °C for 2 h	
19. FT-IR frequency assignments of undoped and	106
doped mullite samples	
20. Effect of dopant ion type on DC and AC electrical	108
properties of mullite ceramics sintered at 1300°C	
for 5h	
21. Kinetics parameters for crystallization of	115
cordierite precursors annealed at 1200°C with	
different heating rates	

List of Tables

22. Effect of annealing temperature on DC electrical	119
resistivity of cordierite samples	
23. Effect of annealing temperature on microhardness	124
of cordierite samples	
24. Effect of precursor's raw materials on crystallite	125
size of cordierite nanoparticles synthesized at	
1300°C for 3 h	
25. Effect of precursor's raw materials on DC and AC	126
electrical properties of cordierite ceramics sintered	
at 1300°C for 2h	
26. Effect of precursor's raw materials on	127
microhardness of sintered cordierite ceramics at	
1300°C for 2h	
27. Effect of doping ion (M ⁿ⁺) type and place on	129
crystallite size of cordierite samples annealed at	
1300 °C for 3 h	
28. FT-IR frequency assignments of undoped and	133
doped cordierite samples	
29. Ionic radii, valence state and electronic	134
configuration of the cations replaced in the	
cordierite	
30. Effect of doping ion (M ⁿ⁺) type and place on	135
sintering and mechanical properties of cordierite	
ceramics sintered at 1300 °C for 2 h	