BIOCHEMICAL STUDIES OF THE ANTIOXIDANT EFFECTS OF POMEGRANATE ON HEPATIC INJURY COMPOUNDS IN MALE ADULT ALBINO RATS

By

ALAA ALI KHALIL ALI OMAR

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Zagazig Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry Faculty of Agriculture Cairo University EGYPT

2015

SUPERVISION SHEET

BIOCHEMICAL STUDIES OF THE ANTIOXIDANT EFFECTS OF POMEGRANATE ON HEPATIC INJURY COMPOUNDS IN MALE ADULT ALBINO RATS

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

ALAA ALI KHALIL ALI OMAR

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Zagazig Univ., 2009

SUPERVISION COMMITTEE

- Dr. EMAM ABDEL- MOBDEE ABDEL-RAHIM Professor of Biochemistry, Fac. Agric., Cairo University
- Dr. SHERIF HELMY AHMED
 Professor of Biochemistry, Fac. Agric., Cairo University
- Dr. SHERIF SALAH MOHAMED
 Assistant Researcher Professor of Nutrition, NRC, Giza

Name of Candidate: Alaa Ali Khalil Ali Omar Degree: M.Sc.

Title of Thesis: Biochemical Studies of The Antioxidant Effects of

Pomegranate on Hepatic Injury Compounds in Male Adult

Albino Rats

Supervisors: Dr. Emam Abdel-Mobdee Abdel-Rahim

Dr. Sherif Helmy Ahmed Dr. Sherif Salah Mohamed

Department: Biochemistry

Branch: Biochemistry Approval: / 2015

ABSTRACT

In ancient times Egyptians regarded pomegranate fruit as a symbol of fertility due to the round shape and abundant seeds .They used it to heal many ailments. Pomegranate fruit mentioned in our holy Quran not less than three times and paid attention for its importance. Most pomegranate (Punica granatum Linn., Punicaceae) fruit parts are known to possess enormous antioxidant activity. The present study was carried out to determine the phenolic and flavonoid contents of pomegranate juice and nanoparticles pomegranate juice. It was an attempt to evaluate the toxic effect of chlorpyrifos (CPF) with either pomegranate juice or nanoparticles pomegranate juice treatments and as antioxidant agents. Therefore, the present study also aimed to elucidate the possible ameliorative role of pomegranate juice (PJ) or nanoparticles pomegranate juice (NPJ) in CPF toxicity when given to male rats and compared with ursodeoxycholic acid (UDCA) drug. This was done through studying the effects of CPF on serum and antioxidant enzymes in liver and kidneys as well as histopathological changes in vital organs such as liver and kidney. Results showed that CPF-intoxicated rats caused significant changes in serum enzyme activity in liver and kidneys, liver function and kidneys function, when compared with normal control. Ingestion of CPF along with PJ or NPJ or UDCA drug improved those parameters. Histopathological reports also revealed that there is a regenerative activity in the liver and kidney cells. PJ and NPJ showed to be hepatoprotective and renal protective against CPF -induced hepatic injury. On the basis of the previous results it can be concluded that pomegranate extracts especially NPJ is a promising natural product, which could be useful for the prevention of diseases caused by oxidative stress and this study reveals biological evidence that supports the use of PJ and NPJ in the treatment of chemical-induced hepatotoxicity and renal toxicity.

Key words: Pomegranate juice, Nanoparicles, Ursodeoxycholic acid, Chlorpyrifos toxicity, Lipid peroxidation, Antioxidant activity

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my father and mother for their patience and help, as well as to my brothers and my sister for all the supports they lovely offered along the period of my post graduation and I can't find adequate words to express my feeling towards them. Also, I wish to express my feeling to my grand father; Khalil (late), my friend; Fawziya (late) and other friends for encouragement.

<u>ACKNOWLEDGEMENT</u>

First of all, I want to thank ALLAH who offered me the ability to perform the work of this study and to whom I relate every success in my life and apologize for any mistakes. My all appreciation utmost respect to my country Egypt where i born, working, still living and learning.

I found no word by which I can express my sincers thankfs, appreciation and profound deepest gratitude to prof. Or. Emam Abdel-Mobdee, Prof. Or. Sherif Helmy Ahmed Professors of Biochemistry, Faculty of Agriculture, Cairo University and Or. Sherif Salah Mohamed Assistant Researcher Professor in Nutrition and Food Science Dept., National Research center, for suggesting the problem, keen supervision, continued assistance, sincere encouragement and valuable comment and unforgettable valuable guidance and advice through the course of study and revision the manuscript of this thesis, also, who guided me with information and kindness, Sacrificing time and effort to provide a sense of purpose and direction to the entire research project.

Grateful appreciation is also extended to all stuff members of Food Toxicology and Contaminants Dept., National Research center and Biochemistry Dept., Faculty of Agriculture, Cairo University.

Finally I am grateful to every person participation in the fulfillment of this work.

Alaa Ali Khalil Ali Omar

ABBREVIATIONS, EXPRESSIONS AND SYMBOLS

4-AAP 4-aminoantipyrine

AA Antioxidant activity or ascorbic acid

AAE Ascorbic acid equivalent

AAP 4-aminophenazone **ACh** Acetylcholine

AChE Acetylcholinesterase
ALP Alkaline phosphatase
ALT Alanine transaminase
ANOVA Analysis of variance
AST Aspartate transaminase

b.w. Body weight

BHA Butylated hydroxyanisoleBHT Butylated hydroxytoluene

BPA Bisphenol A

BuChE Butyrylcholinesterase or pseudocholinesterase or

plasma cholinesterase

CAT Catalase

CDNB 1-chloro-2, 4- dinitrobenzene

CE Catechin equivalent CEs Carboxylesterases

CFIDS Chronic fatigue immunodeficiency syndrome

ChE Cholinesterase
CPF Chlorpyrifos
Chlorpyrifos

CPFO Chlorpyrifos-oxon **CYP450** Cytochrome P450

DHBS 3, 5-dichloro-2-hydroxy benzene sulfonic acid

DNA Deoxyribonucleic Acid

DPPH 2, 2-diphenyl-1-picrylhydrazyl or 1, 1-diphenyl-2-

picryl- hydrazyl

DTNB 5, 5' dithiobis (2 - nitrobenzoic acid)

EA Ellagic acid

EDTA Ethylene di-amine tetra acetic acid

EGCG Epigallocatechin gallate

ENMs Engineered nanoscale materials

ET Ellagitannins

FRAP Ferric reducing antioxidant power

GAE Gallic acid equivalent

GK Glycerol kinase

GPO Glycerol phosphate oxidaseGPx Glutathione peroxidaseGR Glutathione reductase

GRAS Generally recognized as Safe

GSH Reduced glutathione
GSSG Oxidized glutathione
GST Glutathione-s-transferase
H&E Hematoxylin and eosin
HDL High density lipoproteins

HF Hydrofloric acid

HPLC High performance liquid chromatograph

HTs Hydrolysable tannins

IC Injury control LD₅₀ Lethal dose

LDH Lactate dehydrogenase LDL Low density lipoproteins

LMWAs Low molecular weight antioxidants

LPL Lipoprotein lipase LPO Lipid peroxide MDA Malondialdehyde

MFO Mixed function oxidase

MP Methyl parathion

MPS Myofascial pain syndrome

NADP⁺ Nicotinamide adenine dinucleotide phosphate

NC Normal control ND Not detected

NFkB Nuclear factor k B

NO Nitric oxide

NPJ Nanoparticles pomegranate juice

NPs Nanoparticles

NTE Neuropathy target esterase

OFRs Oxygen free radicals
OP Organophosphorus

OPT Organophosphorothionate PCB's Polychlorinated biphenyls

PJ Pomegranate juice

PON 1 Paraoxonase 1

PSO Pomegranate seed oil PUFA Polyunsaturated fatty acid

RDA Recommended dietary allowance

RNS Reactive nitrogen speciesROS Reactive oxygen speciesRSA Radical scavenging activity

SD Standard deviation

SEM Scanning electron microscope

SOD Superoxide dismutase

SPSS Statistical package for social sciences
SSC Suspended-sediment concentrations

TA Tetratable acidity

TAC Total antioxidant capacity

TB Total bilirubin

TBA 2-Thiobarbituric acid Thiobarbituric acid

TBARS Thiobarbituric acid reactive substances

TBHQ Tertiary butyl hydroquinone

TC Total cholesterol
TCA Trichloroacetic acid

TCP 3, 5, 6-trichloro-2-pyridinol

TEM Transmission electron microscopy

TFC Total flavonoids content

TG TriglyceridesTL Total lipidsTocs TocopherolsTP Total proteins

TPC Total phenolic compounds

UA Uric acid

UDCA Ursodeoxycholic acid

UV Ultraviolet

VLDL Very Low density lipoproteins WHO World health organization

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	7
1. Oxidative stress	7
The mitochondria and oxidative stress	8
2. Free radicals	9
3. Scavenging of reactive oxygen species (ROS)	14
4. Phytochemicals / Phytonutrients	16
5. Phenolic compounds	18
6. Pomegranate	21
a. Biochemical constituents of pomegranate	21
b. Pomegranate polyphenols	25
c. Pomegranate health benefits and aspects	27
d. Pomegranate juice bioavailability	33
7. Nanotechnology / Ultrasonication	36
8. Organophosphorus (OP) compounds	47
a. Chlorpyrifos (CPF)	49
b. Mode of action of CPF	49
1. Target organisms	50
2. Non-target organisms	51
c. Fate in the body	52
1. Metabolism	52
2. Excretion	54

9. Standard drug, ursodeoxycholic acid (UDCA) for	
liver injury	55
MATERIALS AND METHODS	59
RESULTS	104
1. In vitro biochemical methods assay of pomegranate juice (PJ) and nanoparticles (sonicated) pomegranate	
juice (NPJ)	104
a. Particles size of samples	105
b. Total phenols (TPC) and total flavonoids content (TFC)	105
c. DPPH Free radical scavenging activity (RSA) and antioxidant activity (AA)	108
2. In vitro biochemical assay	112
HPLC analysis of pomegranate juice and nanoparticles pomegranate juice phenolic compounds	112
3. In vivo biochemical and biological assay	114
a. Effect on the general health of rats, (clinical signs, animal survival, morbidity and mortality)	114
b. Effects of PJ and NPJ on body weight, body weight gain, feed intake and feed efficiency of the	
experimental rats	116
c. Effects of PJ and NPJ on liver and kidneys weight of the experimental rats	117
d. Biochemical assay	120
1. Changes in hepatic function in serum of the experimental rats (Evaluation of AST, ALT, ALP and LDH activities as well as TB content	123
2. Changes in protein fractions in serum of the experimental rats	124

3. Changes in lipid profile in serum of the experimental rats
4. Changes in lipoprotein profile in serum of the experimental rats
5. Changes in renal function in serum of the experimental rats (Evaluation of serum urea, uric acid and creatinine contents)
6. Liver and kidney homogenate catalase (CAT) and superoxide dismutase (SOD) activities of the experimental rats
7. Liver and kidneys homogenate GSH content, GPx and GST activities of the experimental rats
8. Liver and kidneys homogenate lipid peroxidation (LPO), nitric oxide (NO) and total antioxidant capacity (TAC) of the experimental rats
4. Histopathological examination of different groups
a. Liver
b. Kidney
DISCUSSION
SUMMARY
REFERENCES.
ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Chemical identity of chlorpyrifos (CPF)	50
2.	Total phenols content and total flavonoids content of pomegranate juice (PJ) and nanoparticles (sonicated) pomegranate juice (NPJ)	109
3.	Scavenging activity of DPPH of pomegranate juice (PJ) and nanoparticles (sonicated) pomegranate juice (NPJ)	112
4.	HPLC analysis of phenolic compounds in pomegranate juice and nanoparticles pomegranate juice.	115
5.	Body weight, body weight gain, feed intake and feed efficiency of the experimental rats	118
6.	Liver weight, kidneys weight and the ratio relative to final body weight of the experimental rats.	121
7.	Liver function in serum of the experimental rats	125- 126
8.	Protein fractions in serum of the experimental rats.	131
9.	Lipid profile in serum of the experimental rats	134
10.	Lipoprotein profile in serum of the experimental rats	138
11.	Kidneys function in serum of the experimental rats	141

12.	Liver and kidneys homogenate catalase (CAT) activity and superoxide dismutase (SOD) activity of the experimental rats	146
13.	Liver and kidneys homogenate GSH content, GPx activity and GST activity of the experimental rats	151
14.	Liver and kidneys homogenate LPO, NO and TAC of the experimental rats	156

LIST OF FIGURES

No.	Title	Page
1	Schematic diagram of ultrasound exposure system	62
2	A schematic outline of the preparation rat liver and kidneys homogenate	72
3	Before ultrasonication: The particle size distribution of control sample. Black pigments, dispersed in TEM (resolution (a)15 kx, (b) 60kx and (c) 100 kx)	106
4	After ultrasonication: the particle size distribution of sonicated sample. Black pigments, dispersed in TEM (resolution (a) 25 kx, (b) 60 kx and (c)100 kx)	107
5	Total phenols content of pomegranate juice and nanoparticles (sonicated) pomegranate juice	110
6	Total flavonoids content of pomegranate juice and nanoparticles (sonicated) pomegranate juice	110
7	Antioxidant capacity of pomegranate juice and nanoparticles (sonicated) pomegranate juice	113
8	Scavenging activity DPPH in pomegranate juice and nanoparticles (sonicated) pomegranate juice	113
9	Body weight of experimental male albino rats	119
10	Feed efficiency of experimental male albino rats	119
11	Liver weight of experimental male albino rats	122
12	Kidneys weight of experimental male albino rats	122

3	AST activity in serum of experimental male albino rats
ļ	ALT activity in serum of experimental male albino rats
5	AST/ALT ratio in serum of experimental male albino rats
)	ALP activity in serum of experimental male albino rats
7	Total bilirubin content in serum of experimental male albino rats
3	LDH activity in serum of experimental male albino rats
)	Total proteins in serum of experimental male albino rats
)	Albumin in serum of experimental male albino rats
2	Albumin/Globulin ratio in serum of experimental male albino rats
}	Total lipids in serum of experimental male albino rats
ļ	Triglycerides in serum of experimental male albino rats
,	Total cholesterol in serum of experimental male albino rats
)	HDL-c in serum of experimental male albino rats
7	LDL-c in serum of experimental male albino rats
3	VLDL-c in serum of experimental male albino rats