

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

ENERGY SAVING VIA ELECTRONIC BALLAST

By

Eng. ESSAM ABDEL GAYED MOHAMED HENDAWY

Electronics Research Institute

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. MOHAMED M. A. AZIZ

Faculty of Engineering - Cairo University

Prof. Dr. FAEKA M.H. KHATER

Electronics Research Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT MARCH 1998

B1.20

3.4029-15

ENERGY SAVING VIA ELECTRONIC BALLAST

By Eng. ESSAM ABDEL GAYED MOHAMED HENDAWY

Electronics Research Institute

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

er or sch

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mohamed Mamdouh Abdel Aziz

Prof. Dr. Said Abd El-Monem Wahsh

Prof. Dr. Essam Abou Elzahab

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
MARCH 1998

. · . . . ٠. . •

CONTENTS

		Page
LIST OF TABLES		iv
LIST OF FIGURES		vi
LIST OF MAIN SYMBOLS AND ABBREVIATION	Ţ	xi
ACKNOWLEDGMENT		xiii
ABSTRACT	:	xiv
ADSTICICI		241 4
1. INTRODUCTION	:	1
1.1 General		1
1.2 Illumination Definitions		1
1.2.1 Light Output	•	1
1.2.2 Light Level		2
1.2.3 Brightness	!	2
1.2.4 Efficacy of The Lamp		2
1.3 Light Sources		2
1.3.1 Incandescent Lamps		2
1.3.2 Fluorescent Lamps		3
1.3.3 High Intensity Discharge Lamps		3
1.4 Fluorescent Ballasts		3
1.4.1 Magnetic Ballast		4
1.4.2 Electronic Ballast		4
1.5 Review of Literature		4
1.6 Scope of The Work		6
2. ELECTROMAGNETIC BALLAST AND	:	
CONVENTIONAL ELECTRONIC BALLAST		8
2.1 Introduction	, I	8
2.2 Electromagnetic Ballast		8
2.3 Conventional Electronic Ballast	1	9
2.4 Basics of Parallel Loaded Inverter for Electronic Ba	ıllas	t 9
2.5 Rectifier Stage		12
2.6 Inverter Stage		13
2.7 Load Simulation		13
2.8 Simulation Results		13

2.8.1 Supply Current and Voltage	13
2.8.2 Switch Voltage and Switch Current	16
3. HARMONIC CURRENT REDUCTION	18
3.1 Introduction	18
3.2 Harmonic Related Losses in Power Wiring	18
3.2.1 Cables	18
3.2.2 Transformers	19
3.3 Harmonic Reduction	19
3.3.1 Basic Rectifiers With Capacitor Filter	20
3.3.2 Series Inductor Filter	20
	21
	22
3.3.5 Boost Converter for Power Factor Correction	23
4. ANALYSIS AND DESIGN OF THE PROPOSED	
CIRCUIT	24
4.1 Introduction	24
4.2 Circuit Configuration	24
4.3 Modes of Operation	25
4.3.1 On Period Equivalent circuit	25
4.3.2. Off Period Equivalent circuit	25
4.4 Circuit Analysis	26
4.5 Design of the proposed circuit	32
5. THE POWER MOSFET	36
5.1 Introduction	36
5.2 Features of MOSFET Transistor	36
5.3 Driving the Power MOSFET Transistor	37
5.3.1 Turn On and Turn Off Process	38
5.3.2 Drive Circuit Operation	39
5.4 Snubber Circuit for The MOSFET Protection	40
5.5 Pspice Model for MOSFET Transistor	44
6. SIMULATION RESULTS	46
6.1 Pspice Model of The Fluorescent Lamp at High Frequency	46

6.1.1 Version 1: The Linear-Lamp Resistance Model	46
6.1.2 Version 2 : The Cubic Model	46
6.2 Simulation Results of the proposed circuit	47
7. EXPERIMENTAL RESULTS	73
7.1 Introduction	73
7.2 Electromagnetic Ballast	73
7.3 Conventional Electronic Ballast	74
7.4 The Proposed Electronic Ballast	75
7.5 The Results with Modified Drive Circuit	78
8. CONCLUSION	103
REFERENCES	104
APPENDICES	106

LIST OF TABLES

		p	age
Table	2.1	Fourier spectrum of supply current with parallel loaded electronic ballast	15
Table	6.1	Simulation results at $d = 0.4 L_s = L_b$ Spectrum analysis of the supply current	54
Table	6.2	Simulation results at $d = 0.4 L_s = L_a$ Spectrum analysis of the supply current	55
Table	6.3	Simulation results at $d = 0.4 L_s = L_b$ Spectrum analysis of the supply current	59
Table	6.4	Simulation results at $d = 0.2 L_s = L_b$ Spectrum analysis of the supply current	63
Table	6.5	Simulation results at $d = 0.3 L_s = L_b$ Spectrum analysis of the supply current	64
Table	6.6	Simulation results at $d = 0.5 L_s = L_b$ Spectrum analysis of the supply current	65
Table	7.1	Spectrum analysis of the supply current using electromagnetic ballast	79
Table	7.2	Fourier components of the supply current for conventional electronic ballast without series inductor	82
Table	7.3	Fourier components of the supply current for conventional electronic ballast with series inductor	83
Table	7.4	Spectrum analysis of the supply current for the proposed electronic ballast at $d = 0.4$ $L_s = L_a$	86
Table	7.5	Spectrum analysis of the supply current for the proposed electronic ballast at $d = 0.4$ $L_s = L_b$	86
Table	7.6	Spectrum analysis of the supply current for the proposed electronic ballast at $d = 0.2$ $L_s = L_b$	89

Table 7.7 Spectrum analysis of the supply current for the proposed electronic ballast at $d=0.3$ $L_s=L_b$ Table 7.8 Spectrum analysis of the supply current for the proposed electronic ballast at $d=0.5$ $L_s=L_b$ Table 7.9 Spectrum analysis of the supply current for the proposed electronic ballast at $d=0.36$ $L_s=L_b$ Table 7.10 Proposed electronic ballast with $L_s=L_b$ 96 Table 7.11 IEC standard for harmonic currents and corresponding values for the proposed circuit at $d=0.4$ Table 7.12 European standard for harmonic currents and corresponding values for the proposed circuit at $d=0.4$ Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental) at $d=0.4$ $L_s=L_b$			
proposed electronic ballast at $d = 0.5$ $L_s = L_b$ Table 7.9 Spectrum analysis of the supply current for the proposed electronic ballast at $d = 0.36$ $L_s = L_b$ Table 7.10 Proposed electronic ballast with $L_s = L_b$ Table 7.11 IEC standard for harmonic currents and corresponding values for the proposed circuit at $d = 0.4$ Table 7.12 European standard for harmonic currents and corresponding values for the proposed circuit at $d = 0.4$ Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.7		89
proposed electronic ballast at d = 0.36 L _s = L _b Table 7.10 Proposed electronic ballast with L _s = L _b Table 7.11 IEC standard for harmonic currents and corresponding values for the proposed circuit at d = 0.4 Table 7.12 European standard for harmonic currents and corresponding values for the proposed circuit at d = 0.4 Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.8		90
Table 7.11 IEC standard for harmonic currents and corresponding 97 values for the proposed circuit at d = 0.4 Table 7.12 European standard for harmonic currents and 97 corresponding values for the proposed circuit at d = 0.4 Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.9	*	91
values for the proposed circuit at d = 0.4 Table 7.12 European standard for harmonic currents and corresponding values for the proposed circuit at d = 0.4 Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.10	Proposed electronic ballast with $L_s = L_b$	96
Corresponding values for the proposed circuit at d = 0.4 Table 7.13 Supply current and illumination intensity of the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.11		97
proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.14 Harmonic components of the supply current for the proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.12		97
proposed circuit as a percentage of that at 50 Hz with modified drive circuit Table 7.15 Spectrum analysis of the supply current for the proposed electronic ballast (Simulation and experimental)	Table 7.13	proposed circuit as a percentage of that at 50 Hz with-	100
proposed electronic ballast (Simulation and experimental)	Table 7.14	proposed circuit as a percentage of that at 50 Hz	
•	Table 7.15	proposed electronic ballast (Simulation and experiment	

.

.

LIST OF FIGURES

	J	'age
Figure 2.1	Supply voltage and current with electromagnetic ballast	8
Figure 2.2	Parallel Loaded Inverter Electronic Ballast	9
Figure 2.3	The voltage across the LC network with the load Vab	10
Figure 2.4	Supply voltage and current with parallel loaded electronic ballast	14
Figure 2.5	Switch voltage and current with parallel loaded electronic ballast	17
Figure 3.1	Basic rectifiers with capacitor filter.	20
Figure 3.2	Series inductor filter	21
Figure 3.3	Parallel-connected resonant filter PCRF	21
Figure 3.4	Series connected resonant filter SCRF	22
Figure 3.5	Boost converter with power factor correction	23
Figure 4.1	Circuit configuration	24
Figure 4.2	Equivalent circuit during on period	25
Figure 4.3	Equivalent circuit during off period	26
Figure 4.4	Supply voltage	26
Figure 4.5a	Steady state of supply current and voltage at $L_s = L_a$	30
Figure 4.5b	Steady state of supply current and voltage at $L_s = L_b$	31
Figure 5.1	MOSFET equivalent circuit including terminal voltage dependent capacitance	37
Figure 5.2	Voltage drive for the power MOSFET	37