

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ENGINEERING PHYSICS AND MATHEMATICAL DEPARTMENT

QUANTUM ELECTRON DYNAMICS OF SOME NANODEVICES

A thesis Submitted in Partial Fulfillment of the Requirements of the Degree of master in Engineering Physics

By

Hend Ahmed Ahmed El-Demsisy

B.Sc. in Engineering, Faculty of Engineering, Benha University

Supervised by

Prof. Dr. Adel H. Phillips

Professor of Theoretical Solid State Physics Faculty of Engineering, Ain-Shams University

Dr. Dalia S. Louis

Faculty of Engineering, Ain-Shams University

To

Engineering Physics and Math. Dept. Faculty of Engineering, Ain-Shams University

Cairo – 2017

Ain Shams University

Faculty of Engineering

Name: Hend Ahmed Ahmed El-Demsisy.

Subject: Quantum Electron Dynamics of Some Nanodevices.

Degree: M. Sc. thesis in Engineering Physics, Ain-Shams University, Faculty of Engineering, Engineering Physics and Math. Department (2017).

Refereeing Committee:

(1)Prof. Dr. Bahaa-Eldin Mohamed Mohamed Mohamm Faculty of Engineering, Tanta University.

(2)Prof. Dr. Aziz Nazeer Akladious Mina Vice-Dean of Post graduate and Research Studies, Faculty of Science, Beni-Suef University.

(3) Prof. Dr. Adel Helmy Phillips Abd-Elshahid (supervisor) Faculty of Engineering, Ain-Shams University.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ENGINEERING PHYSICS AND MATH. DEPARTMENT

QUANTUM ELECTRON DYNAMICS OF SOME NANODEVICES

A thesis Submitted in Partial Fulfillment of the Requirements of the Degree of master in Engineering Physics

By Hend Ahmed Ahmed El-Demsisy

EXAMINERS COMMITTEE

Name	Signature
Prof. Dr. Bahaa-Eldin Mohamed Mohamed Moharm	······
Prof. Dr. Aziz Nazeer Akladious Mina	
Prof. Dr. Adel Helmy Phillips Abd-Elshahid (supervisor)	

DATE: / / 2017

STATEMENT

This thesis is submitted as partial fulfillment of the requirement of M.Sc. degree in Engineering Physics, Faculty of Engineering, Ain-Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Signature

Hend Ahmed Ahmed El-Demsisy

Researcher Data

Name : Hend Ahmed Ahmed El-Demsisy

Date of birth : 1/8/1988.

Place of birth : Benha

Academic Degree : B.Sc. in Engineering.

University issued the degree : Benha University.

Date of issued degree : 2010.

Current job : Demonstrator in Faculty of Engineering,

Benha University.

ACKNOWLEDGMENT

Through my thesis, and for these things will benefit me in my future research career, first and foremost, all praise is due to **Allah** whose guidance and giving me health, knowledge and patience to complete this work.

I would like to express my deep thanks and gratitude to **Prof. Dr. Adel Helmy Phillips**, Professor of Theoretical Solid State Physics, Faculty of Engineering, Ain-Shams University, not only for suggesting subject of this research work, but also for his close supervision, valuable guidance, help, encouragement and kind criticism. Also, He has given me his precious guidance and whole hearted help during the whole of my master period. His profound knowledge and sincere attitude have guided me through my work.

I also wish to express my earnest and deepest gratitude and admiration to my **Dr. Dalia Selim Louis**. She has given me whole hearted advice and tremendous help, without which my master research could not even have begun. She has given me precious guidance in the academic area through her profound knowledge, and has also provided sincere solicitude and advice for my life. It has been an honor to work with her. Also, I would also like express my appreciation to **Dr. Mina Danial Asham**, for his supportive and encouragement through the development of this research. Finally, I whole heartedly thank my husband, my mother and all family for their invocation of God and endless support

Hend Ahmed Ahmed El-Demsisy

2017

LIST OF PUBLICATIONS

- [1] H. A. El-Demsisy, M. D. Asham, D. S. Louis, A. H. Phillips, "Coherent Photo-Electrical Current Manipulation of Carbon Nanotube Field Effect Transistor Induced by Strain", Open Science J. Modern Physics 2(3), pp.27-31 (2015).
- [2] H. A. El-Demsisy, M. D. Asham, D. S. Louis, A. H. Phillips, "Strain Effect on Transport Properties of Chiral Carbon Nanotube Nanodevice", International Journal of Nanoscience and Nanoengineering, 2(2), pp. 6-11 (2015).
- [3] H. A. El-Demsisy, M. D. Asham, D. S. Louis, A. H. Phillips, "Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice", Carbon Letters (Korean Science), Vol. 21, pp. 8-15 (2017).

CONTENTS

Acknowledgment	vi
List of Publications	vii
Contents	viii
List of Figures	ix
List of Tables	xi
List of Symbols and Abbreviations	xii
Thesis Summary	XV
Chapter I. Introduction	1
Chapter II: Theoretical Model	5
II.1 Quantum Transport Characteristics of SWCNT Nanodevice	_
II.2 Thermoelectric Transport properties of SWCNT Nanodevice.	-
CHAPTER III. Results and Discussion	12
III.1 Quantum electrical transport through SWCNT Nanodevice	_
III.2 Thermoelectric effects of SWCNT quantum dot Nanoc	device29
CHAPTER IV. Conclusion and future work	42,43
References	44

LIST OF FIGURES

Chapter	II: Theoreti	cal Model				
Fig. II.1.	Schematic m	odel of SW	CNT FET			6
Chapte	r III: Resul	lts and Di	scussion			
Fig.III.1.	The energy	gap as a f	function of st	rain for	armchair	SWCNT
with	different	chiral	indices	(5,5),	(7,7)	and
(10,10)						14
Fig.III.2.	The energy	gap as a fui	nction of strai	n for zig	zag SWCl	NT with
different	chiral indices	s (6,0), (7,0)) and (9,0)			15
Fig.III.3.	The energy g	gap as a fun	ction of strain	n for chir	al SWCN	T with
different	chiral indices	s (6,2), (6,3)) and (8,3)			15
FigIII.4	. The curren	t versus st	rain at differ	ent frequ	iencies (A	Armchair
SWCNT)					18
FigIII.5	. The behavi	ior of the	current unde	r strain	effect at	different
frequence	ies (Zigzag S	WCNT)				19
FigIII.6	The behavi	ior of the	current unde	r strain	effect at	different
frequence	ies (Chiral SV	WCNT)				20
FigIII.7	. The behavi	ior of the	current unde	r strain	effect at	different
values of	gate voltage	(Armchair	SWCNT)			22
FigIII.8	. The behavi	ior of the	current unde	r strain	effect at	different
values of	gate voltage	(Zigzag SV	VCNT)		• • • • • • • • • • • • • • • • • • • •	23
FigIII.9	. The behavi	ior of the	current unde	r strain	effect at	different
values of	gate voltage	(Chiral SW	/CNT)			24
FigIII.1	0. The behav	vior of the	current unde	er strain	effect at	different
values of	magnetic fie	ld (Armcha	ir SWCNT)			26
FigIII.1	1. The behav	vior of the	current unde	er strain	effect at	different
values of	magnetic fie	ld (Zigzag	SWCNT)			27

FigIII.12. The behavior of the current under strain effect at dif	ferent
values of magnetic field (Chiral SWCNT)	28
FigIII.13. The variation of Seebeck coefficient, S, with the gate vo	oltage
V _g (Armchair SWCNT)	31
FigIII.14. The variation of Peltier coefficient, Π , with the gate volta	age
V _g (Armchair SWCNT)	32
FigIII.15. The variation of Seebeck coefficient, S, with the gate vo	oltage
V _g (Zigzag SWCNT)	34
FigIII.16. The variation of Peltier coefficient, Π , with the gate volt	age
V _g (Zigzag SWCNT)	35
FigIII.17. The variation of Seebeck coefficient, S, with the gate vo	oltage
V _g (Chiral SWCNT)	37
FigIII.18. The variation of Peltier coefficient, Π , with the gate volt	age
V _g (Chiral SWCNT)	38

LIST OF TABLES

Table (III.1): The values of diameter, d, and angles, θ , of zigzag SWCNT,							
armchair	SWCNT	and	chiral	SWCNT	with	different	chiral
indices			• • • • • • • • • • • • • • • • • • • •				12
Table (III.	2): The val	ues of	energy g	gaps of all S	SWCNT	Correspon	ding to
ε=0.1							30
Table (III.	3): Armcha	ir SW0	CNT				33
Table (III.	4): Zigzag S	SWCN	T				36
Table (III.	5): Chiral S	WCN	Γ				39

LIST OF SYMBOLS

AND

ABBREVIATIONS

 a_1 and a_2 unit vectors in real space

n and m Chiral indices

Chiral vector

k wave vector

r real space lattice vector

C_q quantum capacitance per unit length

L_K kinetic inductance per unit length

L length of the CNT

 V_{ac} Amplitude of the ac-field

ω Angular frequency

I electric current

 $\Gamma_{withphoton}(E)$ Photon-assisted tunneling probability

 $f_{FD(s)} & f_{FD(d)}$ Fermi-Dirac distribution functions

corresponding to source and drain

leads

 V_{sd} bias voltage

energy of tunneled electrons E electronic charge e Planck's constant h Capacitance of the carbon CNT C_{CNT} Quantum dot coupling capacitance between CNT \mathbf{C} quantum dot and the leads V_g Gate voltage Energy of the induced photon ħω Bessel function J_{n} lattice constant aT average temperature Nearest neighbor hopping integral γ_0 Induced strain 3 diameter of CNT d Δ thickness of CNT E_F Fermi-energy Barrier height at the interface between V_b CNT and leads N number of tunneled electrons

B applied magnetic field

m* effective mass of the charge carrier

E_g strained band gap energy

b linear change in the transfer integral

with a change in bond length due to

strain

R radius of the carbon nanotube

 θ Chiral angle

S Seebeck coefficient

Π Peltier coefficient

CNTs Carbon nanotubes

SWCNT Single wall carbon nanotube

MWCNT Multi wall carbon nanotube

Thesis Summary

The purpose of the current thesis is to explore the characteristics of quantum carrier transport of a single walled carbon nanotube quantum dot field-effect-transistor (SWCNTFET) subjected to both a magnetic field and an ac-field (mid infrared region). The effect of tensile strain for zigzag, chiral and armchair SWCNTs will be taken into consideration. Also, it is interesting to investigate the thermoelectric effect, that is, Seebeck and Peltier coefficients in the present different types of strained single walled carbon nanotube quantum dot field effect transistor (SWCNTFET) under the influence of an ac-field with frequency in the mid infrared region and magnetic field. This nanodevice can be modeled as follows: SWCNT in the form of quantum dot is connected to two metallic leads. These two metallic leads operate as a drain and a source. In this three-terminal device, the conducting substance acts as the gate electrode. Governing the Switching and the electrostatics of the carbon nanotube channel is realized by using another metallic gate. The back gate controls the substances at the carbon nanotube quantum dot/metal contact. Landauer-Buttiker formula using to deduce the electric current. Also by using the WKB approximation method, the photon-assisted tunneling probability is deduced. The strained band gap energy for all types of SWCNT is expressed in terms of the induced tensile strain. This band gap energy depends on the chiral indices for every type (armchair, zigzag, chiral) of the single walled carbon nanotube. In our calculations, we consider different chiral indices for every type of SWCNT.

Numerical calculations are performed for the strained energy band gap for zigzag, chiral and armchair SWCNTs. Also, the chiral angle and