

Faculty of Engineering Public Works Department

OPTIMIZATION of DESIGN and OPERATION WASTEWATER TREATMENT PLANTS CRITERIA

A Thesis For

Submitted to the Faculty of Engineering Ain Sham University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by

AMANY MOHAMED ZAID MOHAMED

B.Sc. in Civil Engineering, June 2005, Faculty of Engineering Ain Shams University

Supervisors

Prof. Dr. HAMDY IBRAHIM ALY

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. MOHAMED SHABAN NEGEM

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. MAHMOUD MOHAMED ABD ELAZEEM

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Faculty of Engineering Public Works Department

OPTIMIZATION of DESIGN and OPERATION WASTEWATER TREATMENT PLANTS CRITERIA

A Thesis For

The M.Sc. Degree in Civil Engineering (SANITARY ENGINEERING)

By

AMANY MOHAMED ZAID MOHAMED

B.Sc. in Civil Engineering, June 2005 Faculty of Engineering, Ain Shams University

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof.Dr. Medhat Abd Eminem Salih Professor of Sanitary & Environmental Engineering Faculty of Engineering, Elazhar University	
Prof.Dr. Mohamed Hassan Abd Erazik Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	
Prof.Dr. Hamdy Ibrahim Aly Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	
Prof.Dr. Mahmoud Mohamed Abd Elazeem Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	

Date: - 19 /7 / 2014

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from August to April

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: -/ 2014

Signature: -

Name: - Amany Mohamed Zaid Mohamed

DEDICATION

This work consumed quite a reasonable duration. It is dedicated to who educated, prepared, build capacity and helped the researcher all through her lifetime.

MY MOTHER, MY FATHER and MY BROTHERS

Deep appreciation is due to their support, encouragement and patience.

MY GRANDMOTHER

Thanks are to be extended to her support.

God bless her.

ACKNOWLEDGMANT

Gratitude is due to all who helped in accomplishing this thesis.

Thanks are due to **Prof. Dr.Hamdy Ibrahim**, **Prof. Dr.Mohamed Shaban Negm**, **and Prof. Dr. Mahmoud Abd Azim** for their guidance during executing the research and for providing the needed facilities to carry out the research.

Gratefulness is due to **Prof. Dr. Ahmed Kamal Maud** and **Eng.Mamdouh Raslan** for for their assistance and the approval of the implemented data.

Thanks are also due to **Prof. Dr. Gamal Abd Moaty, Dr.Mohamed Hassan**and **Prof. Dr.Moustafa Mousa** for their permanent advice during producing and presenting the thesis manuscript.

In particular, thanks are also extended to the master plan, operational and maintenance sectors in HCWW, Assuite, Menoufia, Damietta and GIZ for their cooperation by providing the researcher with data and adequate information.

In addition, appreciation is forwarded to **Dr. Motaz Shalaby Eng. Mohamed salah, Eng. Mohamed assal** and **Eng. Maged**.

Finally, deep appreciation is dedicated to my colleagues for their cooperation and encouragement

Eng. Ahmed Mousa, Eng. Mohamed Elnagar, Eng. Moustafa Gamal, Eng. Amany Abdelmgeid, Eng. Mai Afify, Eng. Amr Mahdy, Eng. Heba Mamdouh, Mrs. Shimaa Abdelhafiz, Eng. Nahla Abdsalam, Eng. Gamal Elhosiny, Eng. Medhat Amin, Eng. Abd Mohsin, Eng. Sahar Gomaa

ABSTRACT

Name : - Amany Mohamed Zaid Mohamed

Thesis Title: - "Optimization of Design and Operation Wastewater

Treatment Plants Criteria"

Faculty :- Faculty of Engineer, Ain Shams University.

Specialty :- Civil Engineering, Public Works, Sanitary Engineering.

Summary:

Of this research has been thinking of a way to arrange technologies sewage treatment according to specific criteria established by the decision-makers using a mathematical method. Therefore, the goal of the research is to design a matrix using (AHP) Analytic Hierarchy method, to help decision-makers to choose the appropriate technology for wastewater treatment in Egypt according to specific criteria (such as cost - environmental - energy consumption and the number of employment.

Has been compiled data on operational and technical performance of the treatment plants in Egypt, and that showed a discrepancy between the different technologies in terms of cost ,performance , energy consumption and the number of employment... etc. It has been shown that the technology, which consume less energy may need to large areas of the establishment, which can be built on small areas may need to skilled labor for operation. from search AHP method was used to compared between different technologies, with the development of this method is that we can apply in this area by adding new scale called AHPm, Which showed the following: -

In Upper Egypt prefers to use oxidation ponds, extended aeration, activated sludge or primary treatment

In Delta preferred to use primary treatment, extended aeration or activated sludge, and prefers to stay away from technology oxidation ponds, by review of our findings on the nature of the application during the same way on the provinces (Assiut - Menoufia) and comparison, has notes match the order in these provinces with different grades.

Finally, is recommending that the way AHP suitable to be used to compare between the technologies of wastewater treatment according to specific criteria and access to the results can be applied.

Key Words:

Wastewater treatment; ranking of wastewater technologies; Analytical hierarchy process (AHP).

Who Are These Supervisors

Supervisors:

Prof. Dr. HAMDY IBRAHIM ALY

Prof. Dr. MOHAMED SHABAN NEGEM

Prof. Dr. MAHMOUD MOHAMED ABD ELAZEEM

TABLE of CONTENTS

Title Name

Title No

List of Abbreviation

Page

No

List of T	Γables			
List of	List of Figures			
	Chapter I Introduction			
I.1	Importance of WWTP Design	3/I		
I.2	Implemented Technologies	5/I		
I.3	Study Objectives	9/I		
I.4	Planned Methodology	10/I		
I.5	Thesis Layout	10/I		
	Chapter II :- Literature Review			
II.3	Important Definitions	\/ II		
II.3	Implemented Methods in Egypt	°/II		
II.٣	Overview to AHP Applications	٦/II		
II. ^۳ .a	Choice of an Alternative	٧/ II		
II.3.b	Prioritization / Evaluation	9/II		
II.3.c	Resource Allocation	12/II		
II.3.d	Benchmarking	15/II		
II.3.e	Quality Management	16/II		
II.٣.f	Public Policy	17/II		
II.٣.g	Health Care	18/II		
II.٣.h	Strategic Planning	19/II		
II. ٤	Detailed AHP Applications	20/II		
II.⁴.a	AHP at the Inter-American Development Bank	20/II		
II.٤.b	Description of the Methodology	23/II		
II.°	Comments	28/II		

	Chapter III :-Methodology	
III.1	Multiple Criteria Decision Making (MCDM)	2/III
III.2	AHP Pioneers	4/III
III.3	AHP Primary Functions	6/III
III.3.a	Structuring Complexity	6/III
III.3.b	Measurement on a Ratio Scale	7/III
III.3.c	Synthesis	8/III
III.4	Reasons of AHP Implementation	8/III
III.5	Implementing AHP	8/III
III.5.a	Principles and Axioms of AHP	9/III
III.5.b	Academic Discourses	11/III
III.5.c	The Mathematical Method of AHP Process	12/III
III.5.d	Forming the AHP Steps in Equations	13/III
III.•.e	Examples of AHP Process	14/III
III.6	Strengths and Weaknesses	21/III
III.6.a	Strengths	21/III
III.6.b	Weaknesses	22/III
III.7	Applying AHP in the Present Study	24/III
III.∀.a	Assemble Base Data	24/III
III. ^v .b	AHPm Scale	38/III
III. ^v .b.1	Scale Used All Over Egypt and Deta	38/III
III. ^v .b.2	Scale Used at Upper Egypt	45/III
III.8	Comments	51/III

	Chapter IV :- Results and Discussion	
IV.1	Technologies Analysis and Discussion	1/ IV
IV.\.a	Analysis of Technologies	1/IV
IV.1.b	Discussion of Technologies Results	5/IV
IV.2	Ranking WWTP Analysis and Discussion	6/IV
IV.2.a	Ranking WWTP Analysis	6/IV
IV.7.a.1	Case Studies Analysis	6/IV
IV.2.a.2	Main and Sub-Criteria	7/IV
IV.۲.a.۳	Sub – Criteria Analysis	8/IV
IV.Y.a. 4	Analysis the Results of Case (A)	10/IV
IV.۲.a.°	Discussing Analyzed Results Case (A)	25/IV
IV.۲.a.٦	Analyzing Results of Case (B)	26/IV
IV.۲.a.۷	Discussing Analyzed Results Case (B)	38/IV
IV.۲.a.۸	Analyzing the Results of Case (C)	39/IV
IV.۲.a.۹	Discussing the Analyzed Results Case (C)	47/IV
IV.Ÿ.a.	Analyzing the Results of Case (D)	48/IV
IV.Ÿ.a.	Discussing Analyzed Results of Case (D)	56/IV
IV.۲.b	Comments	57/IV
	Chapter V :- Verification	
V.1	Verification of Menoufia Results	2/V
V.1.a	Cost Criteria	3/V
V.1.b	Environmental (EN) Criteria	4/V
V.1.c	Operational (O) Criteria	5/V
V.1.d	Performance (PF) Criteria	7/V
V.1.e	Form Matrix between Criteria and Alternatives	9/V
V.2	Verification of Damietta Results	11/V
V.3	Verification of Assuite Results	12/V
V.3.a	Cost Criteria	13/V