Medical and Biological Laser Applications Department

National Institute of Laser Enhanced Sciences Cairo University GIZA. ARE

Assessment of the Effect of Low Level Laser Therapy on Parotid Glands of Gamma Irradiated Rats

(An Experimental Study)

Thesis

Submitted to National Institute of Laser Enhanced Sciences, Cairo University in Partial Fulfillment of the Requirements for Ph.D.

Degree in Laser Applications in Dentistry

 $\mathcal{B}y$

Salwa Farid Ahmed

B.D.S. (Cairo University)

Master of Dental Sciences (Cairo University)

Diploma in Medical and Biological Laser Applications

(2013)

Under the Supervision of:

Dr. Ali Mohamed El-Husseny Saafan,

Assistant-Professor of Medical and Biological Laser Applications Department, National Institute of Laser Enhanced Sciences, Cairo University

Prof. Dr. Dalia Hussein El Rouby

Professor of Oral Pathology Department, Faculty of Oral and Dental Medicine, Cairo University

Prof. Dr. Eman M. Fathy El-Maghraby

Professor of Health Radiation Research Department, National Center of Radiation Research and Technology, Atomic Energy Authority

ABSTRACT

Objective: Gamma radiation-induced salivary gland dysfunction has a major deleterious effect on oral health. Aim: This study was carried out to evaluate the possible effect of low level laser therapy (LLLT) on radiation induced oxidative stress in rats' salivary glands. Material and Methods: Sixty four male Albino rats were divided into two groups. One group where the left parotid gland was exposed to 3 sessions of LLL, then rats were subjected to 3 sessions of whole body gamma-radiation. In the other group, rats were subjected to 3 sessions of gamma-radiation; each was followed by a session of LLL to the left parotid gland. The right gland of both groups was used as irradiated control. Parotid glands were collected 1day, 3days, 1week and 2weeks after the end of treatment and were subjected to histological examination and immunohistochemical analysis. Results: The parotid gland of both laser groups showed less intracytoplasmic vacuolization, slight alteration of acinar architecture and almost even size nuclei as compared to the irradiated gland. LLL either before or parallel to gamma-irradiation was effective in increasing cell proliferation on the third and seventh day, respectively as compared to the gamma irradiated group (P<0.05). Statistically, results revealed significant decrease in optical density of caspase 3 activity in the lased groups on the first week as compared to the control. Conclusion: LLLT attenuates the harmful effect of gamma irradiation on the parotid glands of the rats. Also, it improves gland regeneration through modulation of cell proliferation and apoptosis.

KEY WORDS: Low level laser; Gamma radiation; Histopathological; Immunohistochemical; Salivary glands.

ACMIONICUSINOME

Acknowledgment

express my deepest wish appreciation and utmost gratitude Dr. Ali Mohamed El-Husseny to Saafan, Assistant-Professor ofMedical and Biological Laser Department, Applications National Institute ofLaser University for Enhanced Sciences. Cairo his supervision, continuous guidance, encouragement, support, kindness and valuable advices which helped to produce this work.

Thanks and appreciation to Dr. Dalia Hussein ElRouby. Professor of Oral Pathology, Faculty of Oral and Dental Medicine. Cairo University, for her supervision, encouragement throughout helpful advice and the course this work.

I like to express my sincere gratitude to *Dr. Eman M*. Professor Health Radiation **Fathy** El-Maghraby, of Research National for Radiation Research Department, Center Technology, for her supervision, valuable assistance and continuous support during the course of this work.

all Appreciation is extended to members of Medical and Biological Laser **Applications** Department, National Institute of Laser Enhanced Sciences. Cairo University and Radiation Research National Health Department, Center for Radiation Research and Technology, for their co-operation, help and support during this study.

Finally, I like to express my deepest gratitude to my family for their help, encouragement and patience throughout the whole period of this investigation. Very special thanks to my nice son and beautiful daughters for their great help and support.

List of abbreviations

PCNA	Proliferating cell nuclear antigen				
LLLT	Low level laser therapy				
LLL	Low level laser				
InGaAlP	Indium gallium aluminum phosphide				
γ	Gamma				
α	Alpha				
β	Beta				
NO	Nitric oxidase				
IR	Ionizing radiation				
RBCs	Red blood corpuscles				
MVD	Microvascular density				
RT	Radiotherapy				
EF	Excretion fraction				
DNA	Deoxynucleic acid				
PI	Proliferation index				
Co 60	Cobalt 60				
PBL	Peripheral blood lymphocytes				
Cox	cytochrome C oxidase				
He- Ne	Helium- neon				
ATP	Adinosine triphosphate				
RNA	Ribonucleic acid				
NADH	Nicotine adenine dinucleotide, reduced				
MD	Mouth dryness				
LPT	laser phototherapy				
EC	Endothelial cell				
HUVEC	Human umbilical vein endothelial cell				
PDLFs	Periodontal ligament fibroblasts				
CHO K-1	Chinese hamster ovary cells				
HOB	Human osteoblast-like cells				
MSCs	Mesenchymal stem cells				
CSCs	Cardiac stem cells				
MC3T3	Normal primary osteoblast				
ALP	Alkaline phosphatase				
SCs	Schwann cells				
IGF-1	Insulin growth factor-1				
IGFBP3	Insulin growth factor basic protein 3				
Nd:Yag					
mRNA	Messenger ribonucleic acid				
NIR	Near infra-red				

VEGF	Vascular endothelial growth factor
D 1	Day one
D3	Day three
W1	Week one
W2	Week two

Contents

No.	Subject	Page
1	Introduction	1
2	Review of literature	
	I- Ionizing Radiation	3
	II- Low Level Laser Therapy	20
3	Aim of the work	41
4	Material and methods	42
5	Results	
	Hematoxylin and eosin	48
	PCNA immunostaining	64
	Caspase 3 activity	70
6	Discussion	76
7	Summary	89
8	Conclusion	93
9	Recommendation	94
10	References	95
	الملخص العربي	

List of figures

No.	Subject	
Fig. (1)	The penetrating power of different types of radiation.	4
Fig. (2)	Cellular effects of ionizing radiation.	19
Fig. (3)	Cellular effects of LLLT.	23
Fig. (4)	Schematic representation of the main applications of	25
	low-level laser therapy (LLLT).	23
Fig. (5)	Tissue optical window.	26
Fig. (6)	Photomicrograph of parotid gland of group (R, D1) (Haematoxylin &eosin x 200).	52
Fig. (7)	Photomicrograph of parotid gland of group (R, D1)	
	(Haematoxylin &eosin x 400).	52
Fig. (8)	Photomicrograph of parotid gland of group (LG, D1)	
8 ()	(Haematoxylin &eosin x 200).	53
Fig. (9)	Photomicrograph of parotid gland of group (LG, D1)	.
	(Haematoxylin &eosin x 400).	53
Fig. (10)	Photomicrograph of parotid gland of group (GL, D1)	<i>5 1</i>
	(Haematoxylin &eosin x 200).	54
Fig. (11)	Photomicrograph of parotid gland of group (GL, D1)	54
	(Haematoxylin &eosin x 400).	34
Fig. (12)	Photomicrograph of parotid gland of group (R, D3)	55
	(Haematoxylin &eosin x 200).	33
Fig. (13)	Photomicrograph of parotid gland of group (R, D3)	55
	(Haematoxylin &eosin x 400).	33
Fig. (14)	Photomicrograph of parotid gland of group (LG, D3)	56
	(Haematoxylin &eosin x 200).	30
Fig. (15)	Photomicrograph of parotid gland of group (LG, D3)	56
	(Haematoxylin &eosin x 400).	
Fig. (16)	Photomicrograph of parotid gland of group (GL, D3)	57
T: (4.5)	(Haematoxylin &eosin x 200).	
Fig. (17)	Photomicrograph of parotid gland of group (GL, D3)	57
E'. (10)	(Haematoxylin &eosin x 400).	
Fig. (18)		58
	(Haematoxylin &eosin x 200).	

Fig. (19)	Photomicrograph of parotid gland of group (R, W1)	58
	(Haematoxylin &eosin x 400).	30
Fig. (20)	Photomicrograph of parotid gland of group (LG, W1)	59
	(Haematoxylin &eosin x 200).	39
Fig. (21)	Photomicrograph of parotid gland of group (LG, W1)	59
	(Haematoxylin &eosin x 400).	39
Fig. (22)	Photomicrograph of parotid gland of group (GL, W1)	60
	(Haematoxylin &eosin x 200).	00
Fig. (23)	Photomicrograph of parotid gland of group (GL, W1)	60
	(Haematoxylin &eosin x 400).	00
Fig. (24)	Photomicrograph of parotid gland of group (R, W2)	61
	(Haematoxylin &eosin x 200).	01
Fig. (25)	Photomicrograph of parotid gland of group (R, W2)	61
	(Haematoxylin &eosin x 400).	01
Fig. (26)	Photomicrograph of parotid gland of group (LG, W2)	62
	(Haematoxylin &eosin x 200).	02
Fig. (27)	Photomicrograph of parotid gland of group (LG, W2)	62
	(Haematoxylin &eosin x 400).	02
Fig. (28)	Photomicrograph of parotid gland of group (GL, W2)	63
	(Haematoxylin &eosin x 200).	03
Fig. (29)	Photomicrograph of parotid gland of group (GL, W2)	63
	(Haematoxylin &eosin x 400).	03
Fig. (30)	Photomicrograph of parotid gland of group (R, LG	67
	and GL, D1) (PCNA x 400).	0,
Fig. (31)	Photomicrograph of parotid gland of group (R, LG	67
 (2.2)	and GL, D3) (PCNA x 400).	
Fig. (32)	Photomicrograph of parotid gland of group (R, LG	68
FI (22)	and GL, W1) (PCNA x 400).	
Fig. (33)	Photomicrograph of parotid gland of group (R, LG	68
F! (2.4)	and GL, W2) (PCNA x 400).	
Fig. (34)	A histogram representing the mean number of PCNA	
	positive cells in the parotid glands of the different	69
E! (25)	studied groups.	
Fig. (35)		_ ~
	and GL, D1) (Caspase 3 x 400).	73

Fig. (36)	Photomicrograph of parotid gland of group (R, LG	72
	and GL, D3) (Caspase 3 x 400).	73
Fig. (37)	Photomicrograph of parotid gland of group (R, LG	74
	and GL, W1) (Caspase 3 x 400).	/4
Fig. (38)	Photomicrograph of parotid gland of group (R, LG	74
	and GL, W2) (Caspase 3 x 400).	/4
Fig. (39)	A histogram representing the mean optical density of	
	caspase 3 activity in the parotid glands of the	75
	different studied groups.	

List of tables

No.	Subject				
Tab. (1)	Nomenclature of the different experimental groups according to time of scarification.	47			
Tab. (2)	Number of PCNA positive cells per field (mean±S.D.) in the parotid glands of different studied groups and statistical significance of the difference in comparison to R group.	69			
Tab. (3)	Optical density of Caspase 3 activity (mean±S.D.) in the parotid glands of different studied groups and statistical significance of the difference in comparison to R group.	75			

#