Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Military & Police Hospitals in Cairo)

Ehesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By Mai Abd El-Razik Mohamed

M.B.B.CH. – Ain Shams University

Under Supervision of

Prof. Dr. Adel Mohamed Hussin Afifi

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Essam Nour El-Din Afifi

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2015

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to Prof Dr. Adel Mohamed Hussin Afifi, Professor of Internal Medicine and nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to Dr. Essam Nour El-Din Afifi, Assistant Professor of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Dr. Yahya Makkeya, Lecturer of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Mai Abd El-Razik Mohamed

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of The Work	4
REVIEW OF LITERATURE	
Chapter 1: Hemodialysis prescription	5
Chapter 2: Hemodialysis associated comorbidities	23
Chapter 3: Guidelines for kidney diseases	34
Chapter 4: Hemodialysis in Egypt	44
Subjects and Methods	47
Results	51
Discussion	 77
Summary and Conclusion	91
Recommendations	95
References	96
Arabic Summary	·····

LIST OF TABLES

Table No	. Title	Page
Table (1):	Elements of Hemodialysis Prescription	5
Table (2):	Microbiological Standards for Water and Dialysis F	luid Purity
		16
Table (3):	Gender and age distribution in the study population .	51
Table (4):	Different causes of ESRD in the study population	52
Table (5):	Different comorbidities in the study population	53
Table (6):	Work status in the study population	54
Table (7):	Dependency status in the study population	55
Table (8):	Frequency of HD sessions/week in the study populat	ion56
Table (9):	Sponsoring status in the study population	57
Table (10)	Type of vascular access in the study population	57
Table (11):	: Frequency of access failure in the study population.	58
Table (12)	: The levels of Hemoglobin, MCV, Iron study during	g the last 6
	months covered by the study	59
Table (13)	: Hemoglobin category in the study population	60
Table (14)	Ferritin levels in the study population	61
Table (15)	: TSAT category in the study population	62
Table (16)	: History of blood transfusion in the study population	63
Table (17)	Different types of ESA used by the study population	164
Table (18)	: History of iron injection in the study population	65
Table (19)	: History of vitamins use in the study population	66
Table (20)	: The levels of Calcium, phosphorus and PTH during	g the last 6
	months covered by the study	67
Table (21) :	: Calcium levels in the study population	68

LIST OF TABLES

Table No.	Title	Page
Table (22): 1	Phosphorus level in the study population	69
Table (23): 1	PTH levels in the study population	70
Table (24):	Calcium phosphorus product level in the study pop	pulation71
Table (25):	Different types of phosphorus binders used b	y the study
p	opulation	72
Table (26):	Types of complications during HD session i	n the study
p	opulation	73
Table (27):	Viral status in the study population	74
Table (28): 0	Criteria of dialysate used in the study population	75
Table (29): 1	Dialysate calcium in the study population	75
Table (30):	Anticoagulation type used in the study population	76

LIST OF FIGURES

Figure No.	Title	Page
Figure (1): D	Diffusion	8
Figure (2):	Convection	8
Figure (3):	Relationships between membrane efficiency and of	clearance
	and blood flow rates in hemodialysis	11
Figure (4):	Types of Vascular Access for Dialysis	19
Figure (5):	Malnutrition -Inflammation atherosclerosis	(MIA)
	Syndrome	31
Figure (6):	Gender distribution in the study population	51
Figure (7):	Differentcauses of ESRD in the study population	52
Figure (8):	Different comorbidities in the study population	53
Figure (9):	Work status in the study population	54
Figure (10):	Dependancy status in the study population	55
Figure (11):	Frequency of HD sessions /week	56
Figure (12):	Type of vascular access in the study population	57
Figure (13):	Frequency of access failure in the study population.	58
Figure (14):	Hemoglobin category in the study population	60
Figure (15):	Ferritin levels in the study population	61
Figure (16):	TSAT Cateogry in the study population	62
Figure (17):	History of blood transfusion in the study population	63
Figure (18):	Different types of ESA used by the study population	ı64
Figure (19):	History of iron injection in the study population	65
Figure (20):	History of vitamins use in the study population	66
Figure (21):	Calcium levels in the study population	68
Figure (22):	Phosphorus level in the study population	69
Figure (23):	PTH levels in the study population	70
Figure (24):	Calcium phosphorus product level in the study popu	ılation71
Figure (25):	Different types of phosphorus binders u	sed by
	the study population	72

LIST OF FIGURES

Figure No.	Title	Page
Figure (26):	Types of complications during HD session in	the study
	population	73
Figure (27):	Viral status in the study population	74
Figure (28):	Anticoagulation type used in the study population	n76

LIST OF ABBREVIATIONS

Abbrev.	Full term
\mathbf{AV}	Arteriovenous access
BFR	Blood flow rate
BMI	Body mass index
BP	Blood pressure
BUN	Blood Urea Nitrogen
CAPD	Continuous ambulatoryperitoneal dialysis
CAPR	Cardiopulmonary recirculation
CKD	Chronic kideny disease
CMS	US Centers for Medicare and Medicaid
	Services
CPG	Clinical practice guidelines
CRP	C- reactive protein
CVC	Central venous cathter
CVD	Cardiovascular disease
DFR	Dialysate flow rate
DM	Diabetes mellitus
DOPPS	Dialysis outcome and practice pattern study
ERA-EDTA	the European Renal Association-European
	Dialysis and Transplantationassociation
ESRD	End stage renal disease
GFR	Glomerular filtration rate
GraDe	Grades of recommendation assessment,
	Development, and evaluation
HBV	Hepatitis B Virus
HCV	Hepatitis C Virus
HD	Hemodialysis
HDF	Hemodiafiltration

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
HF	Hemofiltration
HTN	Hypertension
IPD	Intermittent peritoneal dialysis
K/DOQI	Kidney Disease Outcome Quality Initiative
KDIGO	Kidney disease improving global outcomes
KOA	The mass transfer area coefficient
LD	Spanish (Law Of Dependence)
MIA	Malnutrition -Inflammation atherosclerosis
	(MIA) Syndrome
MICS	'malnutrition-inflammationcomplex
	syndrome'
MOH	Ministry of health
NKF	National Kidney Foundation
PEM	Protein energy malnutrition
QIP	Qulaity improvement programs
RRT	Renal replacement therapy
SRI	Solute removal index
TMP	Transmembrane pressure
TNF α	Tumor necrosis factor
UF	Ultrafiltration
UKM	Urea kinetic modeling
UpostHD	Urea posthemodialysis
UpreHD	Urea prehemodialysis
URR	Urea reduction ratio
β2Μ	Beta 2 microglobulin
$(\mathbf{K_{uf}})$	The ultrafiltration coefficient

Introduction

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%–40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmfull However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases (CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQI) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good baseline standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Practice Dialysis Outcomes and **Patterns** Study (DOPPS) has observed large in a variation anemia among different countries. The main management hemoglobin concentration in hemodialysis patient varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis patient receiving erythropoietin stimulating agent "ESA" increased from 75% to 83%. The percentage of HD patient receiving iron varies greatly among DOPPS countries range from 38% to 89% (*Locatelli et al.*, 2004).

There challenges in implanting clinical are guidelines in medical practice. Overall **DOPPS** data despite the which show that, availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is

🖎 Introduction 📚

recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an importance indicator of quality and efficacy of patient care at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, limitation and methods of feeding budgetary information concerning practice (Cameron, current *1999*).

Aim of the Work

- 1. To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.
- 2. Statement of the current status of dialysis patient in Egypt (questionnaire).

Hemodialysis Prescription

Hemodialysis is a life sustaining procedure for the treatment of patients with end stage renal disease, it provides for correction of fluid and electrolyte abnormalities associated with chronic renal failure and leads to a dramatic reversal of uremic symptoms and improve the functional status of the patient and increase patient survival (*William*, 1999).

Today we know that total kidney replacement requires more than just dialysis, but also we know that a minimum amount of dialysis is required to optimize both the duration and the quality of life, so to achieve goals of dialysis the dialysis prescription must ensure that an adequate amount of dialysis is delivered to the patients (*Thomas*, 2005).

Table (1): Elements of Hemodialysis Prescription

Dialyzer
Time & frequency
Blood flow rate
Dialysate flow rate
Ultrafiltration rate
Dialysate composition
Anticoagulation

(Brenner and Rectors, 2008)