

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

BIVET

A Study for Detection of Axillary and Non-Axillary Sentinel Lymph Nodes in Operable

Breast Carcinoma, using Patent Blue Dye.

Thesis

Submitted to the Faculty of Medicine
University of Alexandria
In partial fulfillment of the
Requirement of the degree of

Master of General Surgery

By

Wael Ibrahim Abdel Karim El-Kady

M.B.B.Ch

General Surgery Department

Faculty of Medicine

University of Alexandria

SUPERVISORS

Professor Dr Samy El-Sayed Ibrahim

Professor of General Surgery

Medical Research Institute

University of Alexandria

Professor Dr Ibrahim Hassan Eshmawy

Professor of Gen. Surg. & Oncology

Faculty of Medicine

University of Alexandria

Professor Dr Nabil Lotfy Dowidar

Assistant Professor of General Surgery

Medical Research Institute

University of Alexandria

Co-Worker

Dr Amal Sobhy El Sedfy

Lecturer of Pathology

Medical Research Institute

University of Alexandria

Eo my family

Acknowledgements

All my thanks go first to God the creator of me and the real creator of this work..

I would like to express my deepest thanks and high appreciation to

Professor Dr Samy El-Sayed Ibrahim Professor of General surgery,

Medical Research Institute, University of Alexandria for his meticulous supervision, precious instructions and valuable suggestions that had an enormous share in completing this work.

My highest esteem and appreciation for **Professor Dr Ibrahim Hassan Eshmawy** Professor of Gen. Surg. & Oncology, Faculty of medicine, University of Alexandria for his planning, insight, creative ideas and continous guidance throughout this work..

I am greatly indebted to **Dr Nabil Lotfy Dowidar** Assistant professor of General Surgery, Medical Research Institute, University of Alexandria for his gentle and accurate help in the analysis of the results, concise remarks and his precious time that I appreciate very much.

It is with pleasure that I express my deepest gratitude to **Dr Aml Sobhy El-Sedfy** Lecturer of Pathology, Medical Research Institute, University of Alexandria for her kind guidance, valuable advice and continuous help in all parts of this work..

Also,I would like to offer my sincerest thanks to all members of the surgical unit, Medical Research institute, all members of the surgical oncology unit,Alexandria university and to all those who aided me,for their time and help was crucial to accomplish this work..

I would only add my special gratitude to the patients included int this study, they were the real core of this work.

Contents

Chapter	page
Introduction	1
Aim of the work	52
Material	53
Methods	54
Results	60
Discussion	81
Summary	93
Conclusion	96
Recommendations	97
References	98
Arabic summary	

Protocol

Mtroduction

Introduction

THE LYMPHATIC SYSTEM

General considerations:

Lymph is absorbed from the intestinal space into blind ending lymphatic capillaries. Lymphatic capillaries are 10 to 50 µm in diameter and consist of a single layer of endothelial cells with a discontinuous basement membrane ⁽¹⁾. Overlapping interendothelial junctions function as valves with openings that are 10 to 25 nm wide, permitting the entrance of small particles. Pinocytosis may be responsible for the vesicular transport of larger particles through the endothelium. Collagen filaments anchored to the surrounding connective tissue prevent the collapse of lymphatic capillaries.

The filling of lymphatic capillaries can be explained by the osmotic pressure gradient and by fluctuating intraluminal pressures caused by contractions and forward flow of lymph $^{(1,2)}$. Lymph formation, active contractions and external pressures generate lymph flow. Peristals in lymph vessels occurs at 10 to 15 contractions per minute by longitudnal and circular smooth muscle in the media. A transmural distending presssure of 2 to 4 cm H_2O is required for these contractions, which spread at a velocity of 4 to 5 mm/s. The flow is unidirectional because of the lymphatic valves sustained external pressure enhances it $^{(3)}$.

Lymphatic capillaries drain into collecting lymphatic vessels, which in turn drain into a lymph node. The afferent vessels drain into a marginal sinus and subsequently into medullary sinuses between the germinal centers. These centers contain large numbers of phagocytic cells that can accumulate protein colloids, such as the radiolabeled tracers, but not vital dyes. The plexuses within the lymph node drains to the efferent lymphatic vessel, which joins the artrey and vein in the hilum. Direct drainage of the marginal sinus into the efferent vessel also exists⁽⁴⁾.

There are two main types of relation between lymph vessels and lymph nodes. In the first type, the lymph node receives lymph from the afferent duct, filters it and then discharges it into the efferent channel. In the other type, the lymphatic vessel runs through the lymph node or over its surface without discharging its contents into that node⁽⁵⁾.

LYMPH DRAINGE OF THE BREAST:

Axillary lymph node status in breast cancer patients remains the single most important predictor of outcomes ⁽⁶⁾.

A wise concept was postulated in this respect as mentioned "Surgery of malignant disease is not the surgery of organs, it is the anatomy of the lymphatic system". So appreciation of the major nodal groups is essential to understand breast lymphatic drainage⁽⁷⁾.

The axillary lymph nodes:

The primary route of the lymphatic drainage of the breast is through the axillary lymph node groups. The boundaries of these groups of lymph nodes found in the axilla are not well demarcated. Thus, there have been considerable variations in the names given to the lymph node groups; figure(1).

The most common terms used to identify the axillary lymph nodes groups are: the external mammary (Pectoral group), the scapular (posterior group), the central group, the axillary vein group (Lateral group), the subclavicular (apical group), and the interpectoral (Rotter's) groups ⁽⁷⁾.