

شبكة المعلومات الجامعية

بسم الله الرحمن الرحم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد الم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

Banha University Faculty of commerce Statistics, Mathematics and Insurance Department

Statistical Study of Multivariate Quality Control Procedures and Its Applications

By

Hanaa Mohamed Shehata

Supervised By

Prof. Abd ELftah Mohamed Ahmed Kndeal

Dr. Mohamed Swelam EL-Said

Professor of Statistics and Dean

Faculty of Commerce, Banha University

Dr. of Statistic

Faculty of Commerce, Banha University

2007

This Thesis is submitted in partial fulfillment of Requirements for Degree of Master in Applied Statistics at the Faculty Commerce, Banha University.

CXXX

Banha University Faculty of commerce Statistics, Mathematics and Insurance Department

Statistical Study of Multivariate Quality Control Procedures and Its Applications

By

Hanaa Mohamed Shehata

Supervised By

Prof. Abd ELftah Mohamed Ahmed Kndeal

Dr. Mohamed Swelam EL-Said

Professor of Statistics and Dean
Faculty of Commerce, Banha University

Dr. of Statistic
Faculty of Commerce, Banha University

2007

This Thesis is submitted in partial fulfillment of Requirements for Degree of Master in Applied Statistics at the Faculty Commerce, Banha University.

Acknowledgements

No word of gratitude would be enough to express my indebtedness to Professor Abd El-fatah Mohamed Ahmed Kndeal Professor of Statistics and Dean of Faculty of Commerce, Banha University. His generous effort valuable friendly advice have actually helped me from the early to the final stages of this thesis. The tolerance and kindness he has always showed whenever I wished to meet are really worth appreciation. I will never forget Professor Kndeal's willing guidance and patient support that have been indispensable throughout this thesis.

My gratitude also embraces Dr. Mohamed Swelam EL-Said _ Dr. of Statistic at Faculty of Commerce, Banha University _ for his willing assistance and kind supervision.

My colleagues, family and friends have all genuinely contributed to this study through the unlimited encouragement they used to show, which really helped me keep up intellectual research effort from beginning to end.

Finally, many thanks for all who offered me some help during the preparation of this thesis.

This research considers an application of multivariate quality control chart, Hotelling's T² chart, generalized variances chart and MEWMA chart.

It is shown that each of T² chart and MEWMA chart are used to determine whether or not the process mean vector for two or more variables is in-control, generalized variances chart is used to determine whether or not the joint process variability for two or more variables is incontrol.

MEWMA and T² charts allow us to simultaneously monitor whether two or more related variables are in control. Generalized variances chart allow us to simultaneously monitor whether the joint variability of two or more related variables is in control. In addition T²-generalized variances chart allow us to track the process level and process variation simultaneously.

It is shown that multivariate quality control chart do not indicate which variables cause the out-of-control signal so that the interpretation of the out-of-control signal are addressed specially by decomposition of T² to determine which variable(s) are caused the out-of-control signal.

This research effort explores designing the multivariate quality control charts, multivariate control charts for process variability and methods that address which variable(s) caused the out-of-control signal.

Industry fertilizers is an important one of the chemical industries in Egypt, so that this work concerns the fertilizers industries quality control, especially urea fertilizer with application on Delta fertilizers and chemical industries which is considered on of the leading companies in the field of fertilizers production in Middle east with application of multivariate quality control procedures to achieve best one procedure for multivariate quality control.

This application shows that the company should use the multivariate quality control chart to determine whether or not the process is in-control because the production have several correlated variables, and the used of separate control charts is misleading because the variables jointly affect the process. The used of separate univariate control charts in multivariate situation lead to a type I error and the probability of a point correctly plotting in-control are not equal to their expected values.

Table of contents

Chapter 1- Introduction and literature review 1.1. Introduction and overview	
1.2. Motivation	
1.3. The purpose	(
1.4. Literature review	,
Chapter 2- Multivariate control charts 2.1. Introduction	3
2.2. Techniques of multivariate control chart	2: 29
2.2.1. The Hotelling T ² control chart	29
2.2.2. The MEWMA control chart	38
2.2.3. The MCUSUM Control chart	53
2.2.4. The Multivariate process variability control chart.	71
Chapter 3- Interpretation of out-of-control signals 3.1. Introduction	
3.2. Important approaches for detecting of out-of-control characteristics	74 : 74
3.2.1. Decomposition of T ² procedure (MYT) procedure	74
3.2.2. Principal components procedure	90
3.2.3. Discriminate analysis approach	98
3.2.4. Regression adjustment of variables	101
3.2.5. Simultaneous confidence interval procedure	101
3.2.6. Bonferroni procedure	108
3.2.7. Step - down procedure	110
3.2.8. Finite intersection tests (FIT) procedure	115
Chapter 4- An applicable study	124
Chapter 5- Results and conclusions	238
References	236

Nomenclature

ARL Average Run Length of a control chart

Ci The cumulative sum up to and including the ith sample

CUSUM Cumulative SUM

CV Critical Values

EWMA Exponential Weighted Moving Average

FIT Finite inter section tests

HDS Historical data set

LCL Lower control limit

MC1 Multivariate Cusum scheme 1 developed by Pignatiello

and kasunic (1985)

MC2 Multivariate Cusum scheme 2 developed by Pignatiello

and Runger (1990)

MCUSUM Multivariate Cumulative SUM

MEWMA Multivariate Exponential Weighted Moving Average

MYT Mason, Tracy and young decomposition

OOC Out-Of-Control

PCA Principal component analysis

SPC Statistical Process Control

 T^2 Hotelling's control chart

UCL Upper Control Limit

 C^+ Upper one-sided CUSUMS

 C^{-} Lower one-sided CUSUMS

 N^{+} The number of consecutive periods the CUSUM C_i^+ have been nonzero.

N ⁻	=	The number of consecutive periods the CUSUM C_i^-
		have been nonzero.
ά	. =	The probability of type I error
θ	=	The direction of the shift
·λ	=	The noncentrality parameter
χ^2	=	Chi-square control chart
	,	-
:		

.

List of Figures

Figure	1.1	l Bivariate Acceptance Regions	3
Figure	2.1		
		a MEWMA.	46
Figure	2.2	States in the Markov chain used for the off-target distribution of	50
		a MEWMA.	50
Figure	2.3	Atypical V-mask	61
Figure	4.1	T^2 chart of $x_1,, x_{16}$	130
Figure	4.2	T^2 chart of $y_1,, y_7$	133
Figure	4.3	T^2 chart of z_1 ,, $t_{6.8}$	136
Figure	4.4	Generalized variance chart of x_1, \dots, x_{16}	150
Figure	4.5	Generalized variance chart of y ₁ ,, y ₇	153
Figure	4.6	Generalized variance chart of z ₁ ,, t _{6.8}	156
Figure	4.7	MEWMA chart of x_1 ,, x_{16} with ARL = 200, $r = 0.1$	160
Figure	4.8	MEWMA chart of x_1 ,, x_{16} with ARL = 200, $r = 0.3$	164
Figure	4.9	MEWMA chart of x_1 ,, x_{16} with ARL = 200, $r = 0.5$	167
Figure	4.10	MEWMA chart of v.	170
Figure	4.11	MEWMA chart of v.	173
Figure	4.12	MEWMA chart of v	176
Figure	4.13	MEWMA chart of v	180
Figure	4.14	MEWMA chart of v.	183
Figure	4.15	MEWMA chart of v. v. with ADI 200	186
Figure		MEWMA chart of v.	189
Figure	4.17	MEWMA chart of z.	192
Figure	4.18	MEWMA chart of z. t with ADI and	196
Figure	4.19	MEWMA chart of z.	99
Figure	4.20	MEWMA chart of z.	202
Figure	4.21	MEWMA chart of z.	05

Figure	4.22	MEWMA chart of x_1 ,, x_{16} with ARL = 100, $r = 0.5$	209
Figure	4.23	MEWMA chart of x_1 ,, x_{16} with ARL = 300, $r = 0.5$	
Figure	4.24	MEWMA chart of x_1 ,, x_{16} with ARL = 400, $r = 0.5$	212
Figure	4 25	MEWMA short of x_1 ,, x_{16} with ARL = 400, $r = 0.5$	215
Figure	1.25	MEWMA chart of y_1 ,, y_7 with ARL = 100, $r = 0.5$	218
r igute	4.26	MEWMA chart of y_1 ,, y_7 with ARL = 300, $r = 0.5$	221
Figure	4.27	MEWMA chart of y_1 ,, y_7 with ARL = 400, $r = 0.5$	224
Figure	4.28	MEWMA chart of z_1 ,, $t_{6.8}$ with ARL = 100, $r = 0.5$	227
Figure	4.29	MEWMA chart of z_1 ,, $t_{6.8}$ with ARL = 300, $r = 0.5$	
Figure	4 30	MEV/MA short of 21 ,	230
-6-210	,50	MEWMA chart of z_1 ,, $t_{6.8}$ with ARL = 400, $r = 0.5$	233