

ATLANTO-AXIAL (C1-C2) POSTERIOR CERVICAL FUSION USING POSTERIOR CLAMPS

Thesis

Submitted in partial fulfillment of the M.D. Degree in **NEUROSURGERY**

By

MOHAMED ADEL EL MALLAWANY

(M.B.; B.Ch., M.Sc., Cairo University)

Under supervision of

PROF. DR. AMR MAHMOUD SAFWAT

Professor of Neurosurgery, Faculty of Medicine, Cairo University

PROF. DR. IBRAHIUM MOHAMED IBRAHIUM

Professor of Neurosurgery, Faculty of Medicine, Cairo University

PROF. DR. SAMEH AHMED SAKR

Professor of Neurosurgery, Faculty of Medicine, Cairo University

DR. MOHAMED IBRAHIUM REEFAT

Lecturer of Neurosurgery
Faculty of Medicine, Cairo University

FACULTY OF MEDICINE, CAIRO UNIVERSITY 2014

بسم الله الرحمن الرحيم

ACKNOWLEDGMENT

Above all, my deepest thanks go to God, for giving me the patience, power, and health to finish this work

I am deeply thankful to **PROF. DR. AMR SAFWAT**, Professor of Neurosurgery, Faculty of Medicine, Cairo University. I am greatly honored to learn from his experience and wise counsel, and thankful for him for giving me some of his precious time.

I am greatly honored to express my deepest thanks, gratitude and respect to my mentors PROF. DR. IBRAHIUM MOHAMED IBRAHIUM, and PROF. DR. SAMEH SAKR, Professors of Neurosurgery, Faculty of Medicine, Cairo University, for their guidance, supervision, and continuous advice, not only during this work but ever since I started my residency. I would also love to express my appreciation for all the psychological support they always gives me and for their continuous guidance to me.

My heartful thanks go to **DR. MOHAMED REEFAT**, Lecturer of Neurosurgery, Faculty of Medicine, Cairo University, for helping me out through the study, guiding me to finish this work, simplifying and clarifying things for me through his valuable comments.

CONTENTS

		Page
•	INTRODUCTION	1
•	AIM OF THE WORK	5
•	REVIEW OF LITERATURE	6
	o Epidemiology	6
	o Classification	8
	o Anatomy	12
	o Pathophysiology	44
	o Diagnosis	54
	o Treatment	66
•	PATIENTS AND METHODS	108
•	RESULTS	122
•	CASE PRESENTATION	129
•	DISCUSSION	149
•	CONCLUSION	160
	RECOMMENDATIONS	161
	SUMMARY	162
	REFERENCES	165
	ARABIC SUMMARY	175

LIST OF FIGURES

No.	Title	Page
1	Classification of some CSIs by level, trauma mechanism, and morphology, and resultant clinical stability	9
2	Sagittal view of the occiput, atlas, and axis	12
3	Anatomy of cervical vertebrae	15
4	Anatomy of Atlas vertebrae	15
5	Anterior view of Axis vertebrae	16
6	Posterior view of Axis vertebrae	17
7	Superior and anterior view of the atlas & Axis vertebrae	18
8	Articulation between the atlas and the axis showing sulcus for vertebral artey	20
9	Articulation between the atlas & axis showing the atlantoaxial joints	20
10	Cervical spine ligaments	21
11	Upper cervical spine ligaments anterior view	22
12	Upper cervical spine ligaments posterior view	22
13	Artist's drawing of the posterior CCJ illustrating its numerous specialized ligamentous structures. The tectorial membrane is reflected up and down in this drawing	24
14	Cadaveric dissection illustrating the view of note the transverse ligament (T), alar ligament (A), accessory atlantooccipital membrane (AAA), and the atlas (C1) and axis (C2).	25
15	Cadaveric dissection noting the transverse occipital ligament (TOL)	26
16	Anterior drawing noting the jugular foramen (a) and its relationship to the lateral atlantooccipital ligament (b) notethe anterior longitudinal ligament (c) and the rectus capitislateralis (d)	27
17	Cadaveric dissection noting the right lateral atlantooccipital (LAO) ligament. Note the jugular foramen (JF) and atlas (C1)	28
18	Cadaveric dissection noting the Barkow ligament (arrow). For	29

No.	Title	Page
	reference, note the right occipital condyle (OC) and dens (D)	
19	Posterior view of the CCJ illustrating the relationship between the tectorial membrane (shadowed) and the more anterior-lying ligaments	31
20	Sagittal drawing of the neck and cranial base depicting the various specialized ligaments of the CCJ region	33
21	Cadaveric dissection of the anterior CCJ noting the anterior atlantooccipital (AAO) membrane	34
22	Anatomy of vertebral artery on 3D CTA	35
23	Anterior view of cervical spine and foramen transverserium	37
24	Cervical spine vasculature	37
25	A atlas and axis articulation superior view	42
	B What can happen to the 'usual' anatomy, when a force is applied to the skull on one side	
26	The Effects of the Atlas Subluxation	43
27	Forward displacement of the trunk and compression and upward rotation of the cervical spine and head	46
28	Extension teardrop fracture	48
29	Types of odontoid fractures	50
30	Type II odontoid fracture	50
31	Type III odontoid fracture	50
32	Fractures of the 1st cervical vertebra (atlas) type I,II &III	51
33	Fractures of the 1st cervical vertebra (atlas) type IV &V	52
34	Hangman's fracture	53
35	Diagramatic interpretation of lateral X ray cervical	59
36	Radiographic interpretation of lateral X ray cervical	61
37	'Open mouth' view of the odontoid	61
38	Halo vest	81
39	Gallies fusion	83

	<u></u>	
No.	Title	Page
40	Modified Gallies fusion	84
41	Gallie Technique	84
42	(a, b): Brooks-Jenkins fusion	85,86
43	(a, b): Artist's illustration of Sonntag wire fusion. Additional autograft may be placed to promote fusion (arrow)	87
44	Application of laminar clamps	88
45	A odontoid fracture and atlantoaxial kyphosis (arrow) 3 months after injury	90
46	Lateral X-ray of posterior cervical clamp fixation from C1–3	91
47	Anterior odontoid screw	92
48	a: Axial CT scan of C2 revealing aberrant vertebral artery in the intended path of a right C1–2 transarticular screw Figure b showing course of vertebral artery	94
49	Magerl and Seemann performed trans articular screw fixation	95
50	(A) Trajectory for a C1–2 transarticular screw if the patient is positioned without capital flexion of the head on the neck (B) Trajectory for a C1–2 transarticular screw for a patient positioned with capital flexion of the head on the neck (military tuck position)	95
51	Lateral X-ray of a C1–2 transarticular screw placed over a K-wire	96
52	Course of VA and trans articular screw fixation	96
53	a, x ray pre and postoperative of transarticular screw fixation b, course of VA	96
54	Artist's illustration of a completed C1 lateral mass with C2 pedicle screw (Goel's technique) construct	98
55	Photograph of a spine model demonstrating the entry point for a C1 lateral mass screw	99
56	Drilling of pedicle screw	99
57	Artist's illustration of the creation of a defect in the posterior lamina of C1 prior to placement of a C1 lateral mass screw. This defect accommodates the screw shaft and head	100
58	Artist's illustration of the placement of a C1 lateral mass screw	100

No.	Title	Page
59	Artist's illustration of a completed C1 lateral mass with C2 pars screw construct	101
60	C2 pedicle screw placement with image guidance	101
61	Lateral mass c2 pedicle post op screw placement	102
62	Laminar screws	103
63	Showing the exposure of the upper cervical & cranio-cervical junction	111
64	Artist drawing of application of hook	112
65	Intraoperative photo of hooks	112
66	Intraoperative image was taken to ensure proper alignment	113
67	The Apofix clamp	113
68	Intraoperative Clamp applied in situ after implantation of graft	114
69	Visual analogue scale	117
70	Age distribution	122
71	Cause of instability (pie chart)	123
72	Patients' distribution according to ASIA motor score	124
73	ASIA scores reported pre- and postoperatively	125
74	Postoperative VAS pain score and NDI scores compared to preoperative scores	126
75	Mean of FMI scores reported pre- and postoperatively	126
76	CT cervical axial cuts showing odontoid fracture	129
77	CT cervical sagittal and coronal reconstruction showing odontoid fracture	130
78	MRI cervical spine, T2 sagittal cuts	130
79	MRI cervical spine, T2 axial cuts	130
80	Intraoperative x-ray after reduction	131
81	Showing the grooving of upper arch of c1 before applying the hook	131
82	Intraoperative image after fixation showing C1 C2 hooks	132

No.	Title	Page
83	Intraoperative x-ray after fixation	132
84	X ray dynamic views preoperative showing wide range of motion between c1 c2	133
85	Showing absence of movement during flexion and extension dynamic views in follow up	133
86	CT cervical with sagittal reconstruction post operative follow up	134
87	CT axial cuts post op follow up showing the hooks	134
88	X ray cervical spine lateral view showing the odontoid fracture	135
89	CT sagittal reconstruction showing type III odontoid	136
90	CT coronal reconstruction showing type III odontoid fracture	136
91	Intraoperative view after fixation	137
92	Comparison between displaced odontoid preoperative in the above image with the reduced one in the post op CT in the image below	137
93	CT sagittal reconstruction and axial cuts post operative showing proper placements of the hooks and improvement in the canal diameter after the reduction if compared with the preoperative one	138
94	MRI cervical spine sagittal T2 showing compression of spinal cord at c1 c2 with cord signal	139
95	MRI cervical spine axial cuts T2 showing canal compromise	140
96	X ray dynamic views showing wide range of motion between C2 in flexion and extension views	140
97	X ray lateral view in which the odontoid fracture is hidden which reveal the importance of dynamic views to disclose occult instability	141
98	MRI brain T1 axial cuts showing normal size of the ventricles	141
99	CT cervical spinal coronal reconstruction view preoperative showing fracture odontoid process and eccentric position to the left	142
100	X ray lateral neutral view post operative in follow up showing fusion	142

No.	Title	Page
101	CT postoperative coronal reconstruction	143
102	CT postoperative axial cuts postoperative	143
103	CT postoperative sagittal reconstruction showing proper hook placement and fusion of odontoid process with c1.	144
104	X ray lateral view showing forward displacement and gapping of c1 over c2 on flexion denoting instability	145
105	X ray open mouth view showing the odontoid fracture	145
106	CT cervical spinal axial view showing fracture odontoid process, increased atlanto-dens distance	146
107	MRI sagittal T2 showing the fracture	146
108	Intraoperative view showing compression of the clamps for approximation of c1 c2 laminae	147
109	Intraoperative view showing the clamps of c1 c2 laminae in place	147
110	Post operative CT and follow up X-ray showing the clamp	148

LIST OF TABLES

No.	Title	Page
1	Management of combination fractures	74
2	Indications for posterior cervical fusion	77
3	Odom's criteria for assessment	90
4	Comparison between popular posterior approaches	105
5	ASIA grade E (Normal) indicates no motor and sensory deficit	116
6	Frunkel's classification of neurological functioning	116
7	The functional independence measure scale	119
8	MASTER TABLE	120
9	Postoperative neurological and functional scores recorded at the end of follow-up period compared to preoperative scores	127

LIST OF ABBREVIATIONS

AAA accessory atlantoccipital
AAD Atlanto-axial dislocation
AAO Anterior atlantoccipital

AARD Atlanto-axial rotatory dislocation

ADI Atlanto-dens interval

ALL Anterior longitudinal ligament

AP Anteroposterior

AS Ankylosing spondylitis

ASIA American spine injury association

C Cervical CO occiput

CCJ Craniocervical junction

CJVA Cervival junction vertebral artery
CJVA Cervical junction vertebral artery

CSI Cervical spine injury
CT Computed tomography

CTA Computed tomography angiograhy

CVJ Cranio-vertebral junction

EMS Emergency medical service system.FIM Functional independence measureFMI Functional measure of independence

Ft Feet

GCS Glasgow Coma Scale HTV Halo-thoracic vest

ICD International Statistical Classification of Diseases and Related Health

Problems

JOA Japanese orthopedic association score

LAO Lateral atlantooccipital

Mph Mile per hour

MDCT Multi-detector computed tomography

MPR Multiplanar reformation
MRI Magnetic resonance imaging

MVA Motor vehicle accident

NASCI National acute spine cord injury

NDI Neck disability index

NEXUS National Emergency X-radiography Utilization Study

NG Nasogastric

PACS Picture archiving and communication system

PAO Posterior atlantooccipital

PLL Posterior longitudinal ligament

RA Rheumatoid arthritis **ROM** Range of motion

LIST OF ABBREVIATIONS

SCI Spinal cord injury
SCIWORA Spinal cord injury without radiographic abnormality
SEH Spinal epidural hematoma

Short time to inversion recovery **STIR**

Longitudinal relaxation **T1** Transverse relaxation **T2**

Transverse relaxation obtained using gradient echo sequences **T2***

TA Transarticular

Transarticular screw **TAS**

Transverse occipital ligament TOL

Vertebral artery VA

Vertebral body sagittal distance **VBS**

ABSTRACT

Objectives: The present study was designed to determine the surgical yield of cervical C1-C2 fixation by implantation of hooks for the treatment of patients with C1-C2 instability.

Patients & Methods: The present study included 20 patients; assigned for C1-C2 fusion for non-neoplastic disease; diagnosis and inclusion was confirmed by magnetic resonance imaging(MRI). The applied technique for C1-C2 hook fixation was conducted according to Holness et al., using either iliac crest or artificial bone graft. Postoperative bracing (firm collar) was applied for 8-12 weeks. Outcome Measures included radiological evaluation of successful bone fusion, neurological evaluation using the American Spinal Injury Association (ASIA) motor score, neck and arm pain scoring, neck disability index (NDI) and the functional independence measure (FIM) presented as total motor score. Evaluations were conducted preoperatively and at end of follow-up period of at least 6 months.

Results: The study included 11 patients with odontoid fracture, 3 transverse atlantal ligament injuries, 4 os odontoideum and 2 had rheumatoid C1-C2 instability. Preoperative neurological evaluation detected 8 patients were ASIA grade B, 7 were ASIA grade C and 5 patients were ASIA grade D. All surgeries were conducted smoothly without intraoperative complications and an autogenous iliac crest graft was applied in 18 patients, while artificial bone grafts were used in 2 patients. Radiological examinations conducted at end of follow-up period at least 6 months showed evidence of fusion, defined as the absence of C1-C2 movement on lateral flexion-extension radiographs and continuity of trabecular bone formation between C1 and C2 across the graft and disappearance of spine instability in 13 patients (65%). Postoperative clinical evaluation revealed significant improvement of neurological ASIA grading and 7 patients (35%) showed complete recovery without motor or sensory deficit. Both pain and neck disability scores was decreased postoperatively compared to preoperative scores. Postoperative total FMI motor power scoring was higher compared to preoperative measures.

Conclusion: Posterior C1-C2 fixation using c1 c2 hooks is technically simple to apply and can be done safely without concomitant intra- or postoperative complications. High success rates in obtaining fusion and significant improvement at the end of follow-up with high quality-of-life scores make this method of posterior fixation and fusion an ideal surgical modality for higher cervical spine instability.

Keywords

C1-2 fixation, cervical instability, rigid fixation, hooks

INTRODUCTION

Trauma is one of the major causes of instability of the high cervical spine. In addition, the C1-2 intervertebral level of the spine roughly corresponds to the cervicomedullary junction; therefore, correction of instability is desirable to avoid the potential risk of serious neurological sequelae (**Kontautas** *et al.*, **2005**).

Cervical spine injuries (CSI) occur at an annual incidence of 210 per million, causing annually8 to 21 spinal cord injuries (SCI) per million. Motor vehicle accidents are the most common trauma mechanism, with 3:1 male predominance. Despite being relatively rare occurring in only 2.4% of blunt trauma admissions, the social and economic impact of cervical spine injuries is extensive, because the majority of cervical spine injuries complicated by spinal cord injury occur in young adults, with median age of only 31 years, often with life-long consequences. (Koivikko et al., 2004).

The evaluation and management of cervical spine injuries is a core component of the practice of emergency medicine. The incidence of serious cervical spine injuries is low but associated rates of death and disability are high; therefore, the emergency physician must have a strong knowledge base to identify these injuries as well as clinical skills that will protect the patient's spine during assessment. Cervical spine injury causes an estimated 6000 deaths and 5000 new cases of quadriplegia in the United States each year. Males are affected 3 times as frequently as females. Two to three percent of blunt trauma patients who undergo cervical spine imaging are diagnosed with a fracture. The second vertebra is most commonly injured, accounting for 24% of fractures; the sixth and seventh vertebrae together account for another 39% of fractures. From a clinical perspective, it is crucial for the emergency physician to diagnose a fracture. In the NEXUS (National Emergency Xradiography Utilization Study) trial, 56.7% of cervical spine fractures were unstable and another 13.9% were otherwise classified as clinically significant. Older age is an important risk factor for cervical spine injury: