Retrospective Analysis for the Impact of Adjuvant Chemotherapy Initiation Timing On The outcome of Non Metastatic Breast Cancer at Ain Shams Hospitals

Thesis

Submitted For Partial Fulfillment of Master Degree On Clinical Oncology And Nuclear Medicine

Bγ **Asmaa Waheed Mohammed Mostafa** *M.B.B.C.H.*

Under supervision of

Dr. Hany Mohammed Abd El Aziz

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Nesreen Ahmed Mosalam

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Dr. Amr Shafik Tawfeek

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Department of Clinical Oncology and Nuclear Medicine Ain Shams University 2016

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALIAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Hany Mohammed Abd El Aziz**, Professor of Clinical Oncology and Nuclear Medicine - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mesreen Ahmed Mosalam**, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Amr Shafik Tawfeek**, Lecturer of Clinical Oncology and Nuclear
Medicine, Faculty of Medicine, Ain Shams University,
for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Asmaa Waheed Mohammed Mostafa

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	10
Introduction	1
Aim of the Work	6
Review of Literature	
■ Epidemiology and Etiological Factors	7
Pathology and Molecular Biology	16
 Clinical Presentation and Diagnostic Workup 	26
Prognostic and Predictive Factors	36
■ Treatment Modalities	50
Patients and Methods	68
Results	72
Discussion	111
Summary and Conclusion	133
Recommendations	137
References	
Arabic Summary	

List of Tables

Table No.	Title P	age No.
Table (1):	Estimated new breast cancer cases a	and
	deaths by age in United States on 2015	58
Table (2):	Available gene expression profiling tes	t25
Table (3):	Clinical and pathologic staging of brecancer according to AJCC 7th edition.	
Table (4):	An approximate 5-year relative survivate for each stage of breast cancer	
Table (5):	Patient characteristics.	74
Table (6):	Clinico-pathological characteristics:	75
Table (7):	Histopathological characteristics	77
Table (8):	Hormonal receptor status, H expression	
Table (9):	Distribution of patients according to the to chemotherapy (weeks):	ime
Table (10):	Incidence of metastasis by site:	82
Table (11):	Patient Characteristics by Interval fr Surgery to Chemotherapy.	
Table (12):	Tumor characteristics distribution of the 4 different time groups	ver
Table (13):	Kaplan- Meier method for Over survival evaluation among 300 patie according to interval from definit surgery to start of adjuv chemotherapy	rall nts :ive ant
Table (14):	Kaplan- Meier method evaluating over survival according to different patient tumor and therapeutic prognostic factor	rall at's,
Table (15):	Prognostic Factors for Overall Surviva Univariate analysis using Kaplan Ma analysis	l in yer

List of Tables (cont. .).

Table No.	Title	Page	No.
Table (16):	Kaplan- Meier method evaluating survival according to breast molecular subtypes.	cancer	94
Table (17):	Kaplan-Meier plot for breast disease -free survival according interval between surgery chemotherapy initiation for the groups	ng to and e four	95
Table (18):	Kaplan- Meier method evaluating of free survival according to dipatient's, tumor and there prognostic factors.	disease fferent apeutic	
Table (19):	Kaplan- Meier method evaluating of free survival according to breast molecular subtypes and grade III to	cancer	103
Table (20):	Relation between time to chemot initiation and the breast cancer su and high risk patient's distribution	ıbtypes	107
Table (21):	Multivariable analysis for survival of the Patients according to molecular subtype and high risk for according to the time to chemot categories	to their eatures herapy	109
Table (22):	Multivariable analysis for disease survival of the Patients according to molecular subtype and high risk for according to the time to chemot categories.	se free to their eatures herapy	

List of Figures

Fig. No	. Title Page	No.
Fig. (1):	Breast cancer global incidence	8
Fig. (2):	Age specific female breast cancer incidence	
	and mortality rates curve	
Fig. (3):	Rare histological types of breast cancer	
Fig. (4):	Algorithm for breast cancer subtypes	23
Fig. (5):	-	
	vertebral body lesion	31
Fig. (6):	<u>-</u>	
		36
Fig. (7):	-	
	estrogen receptor (ER) status for the end	
	points of overall survival (OS) with P value	
	0.001, indicating significant hazards over	
	time	
Fig. (8):	Kaplan-Meier plot of BCSS by PR status	45
Fig. (9):	Female Breast Cancer Treatment Patterns	
	(%) by Stage	53
Fig. (10)		
	Epidemiology, and End Results (SEER)-	
	Medicare Database patients	55
Fig. (11)	Patient's distribution according to	
	menopausal state.	72
Fig. (12)	Patients' distribution according to residency	73
Fig. (13)	Patient's distribution according to type of	
	definitive surgery:	74
Fig. (14)	Stage distribution	76
Fig. (15)	Patient's distribution according to tumor	
	pathology	77
Fig. (16)	: Patients distribution according to the	
	Interval from definitive surgery to start of	
	chemotherapy in 300 Egyptian patients	81
Fig. (17)	study population survival status after 5	
-	vears follow up.	83

List of Figures (Cont...)

Fig. No.	Title	Page 1	Vo.
Fig. (18):	Patient's distribution over the 4 diff	ferent	
	time categories according to their reside		83
Fig. (19):	Patient's distribution over the four diff	ferent	
	time categories according to	their	
	menopausal status		85
Fig. (20):	ER positive cases distribution over the	e four	
	different time categories.		87
Fig. (21):	PR positive cases distribution over the	e four	
	different time categories.		88
Fig. (22):	Kaplan-Meier plot for overall su	rvival	
	according to interval between surgery	7 and	
	chemotherapy initiation. Overall surviv	al for	
	the four groups.		90
Fig. (23):	Kaplan- Meier method evaluating or	verall	
	survival according to menopausal status	s :	92
Fig. (24):	Kaplan-Meier plot for breast cancer e	event-	
	free survival according to interval bet	tween	
	surgery and chemotherapy initiation. E		
	cancer Disease -free survival for the	four	
	groups.		96
Fig. (25):	Kaplan- Meier method evaluating		
	disease free survival according to the l	ymph	
	node involvement stage		97
Fig. (26):	Kaplan- Meier method evaluating	${ m the}$	
	disease free survival according to tumor	size	97
Fig. (27):	Kaplan-Meier method evaluating the di	isease	
	free survival according to pathological s	tage	98
Fig. (28):	Kaplan- Meier method evaluating di	sease	
	free survival and STAGE III patients v	ersus	
	stage I and II.		98

List of Figures (Cont...)

Fig. (29): Kaplan- Meier method evaluating the disease free survival according to type of surgery	Fig. No.	Title	Page No.
Fig. (30): Kaplan- Meier method evaluating the disease free survival according to ER status 100	Fig. (29):	disease free survival according to type	pe of
Fig. (31): Kaplan- Meier method evaluating the	Fig. (30):	Kaplan- Meier method evaluating	the
disease free survival according to type of	Fig. (31):	Kaplan- Meier method evaluating	the
hormonal treatment received100		hormonal treatment received	100
Fig. (32): Kaplan- Meier method evaluating disease	Fig. (32):	Kaplan- Meier method evaluating di	sease
free survival and HER2 patients	Fig. (33):	<u>-</u>	
free survival and triple negative patients 104	J	free survival and triple negative patients	s 104
Fig. (34): Kaplan- Meier method evaluating disease	Fig. (34):	Kaplan- Meier method evaluating di	sease
free survival and hormone positive patients 105		free survival and hormone positive patie	ents 105
Fig. (35): Kaplan- Meier method evaluating disease	Fig. (35):	-	
free survival and grade III patients versus			
grade I and II	Fig (26).		
initiation and the breast cancer subtypes and	r 18. (90):		10

List of Abbreviations

Abb.	Full term
ΔIc	Aromatase inhibitors
	American Joint Committee on Cancer
	Axillary lymph node dissection
	Accelerated partial breast irradiation
	American Society for Radiation Oncology
	Breast conservative surgery
BI-RADS	Breast Imaging Reporting and Data System
CNB	Core needle biopsy
CT	Computed tomography
DCIS	Ductal carcinoma in situ
DFS	Disease-free survival
DMFS	Distant metastasis-free survival
ER	Estrogen receptor
FNAB	Fine Needle Aspiration Biopsy
HER2	Human epidermal receptor
HR	Hormone receptor
IDC	Invasive ductal carcinoma
ILC	Invasive lobular carcinoma
LCIS	Lobular carcinoma in situ
LNR	Lymph node ratio
LVI	Lymphovascular invasion
MRM	Modified radical mastectomy
NCCN	National Comprehensive Cancer Network

List of Abbreviations (Cont...)

Abb.	Full term
NSABP	National Surgical Adjuvant Breast and Bowel Project
OC	Oral contraceptives
OS	Overall survival
PET	Positron emission tomography
PR	Progesterone receptors
SEER	Surveillance, Epidemiology, and End-Results
SERMs	Selective estrogen receptor modulators
SLNB	Sentinel lymph node biopsy
SRI	Surgery radiotherapy interval
TNBC	Triple negative breast cancer
TNM	Tumor, node, metastasis classification
TTC	Time to chemotherapy
WHO	World health organization

ABSTRACT

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer deaths in women worldwide, accounting for 23% of total cancer cases and 14% of all cancer related mortalities. This study is a retrospective analysis conducted over 300 female patients diagnosed with invasive non metastatic breast cancer presented to Clinical oncology department at Ain-Shams University hospitals. All patient's records in the period from January 2007 to December 2011 were reviewed allowing five years overall survival and disease free survival follow up, all these data were collected through chart analysis. Patient characteristics, clinical picture and pathological data were thoroughly collected. In the current study, many of the parameters addressed were almost similar to worldwide incidences with little variations. Mean age at diagnosis was 50 years. Stage II was the most prevalent stage, IDC was the most common pathological subtype, and the hormone receptor positive was the most common molecular subtype. Positive family history represented 15% of the total population at least one first or second degree relative. Most of the patients were urban habitat accounting for 77% while rural population was only 23%. The median time to begin chemotherapy is 5 weeks (SD= 2.8), ranging from 1-12 weeks. The patients were classified into 4 strata, a total of 36% of patients started chemotherapy in less than 4 weeks, 44.7% waited 4 - 8 weeks, and 14% initiated their chemotherapy within 8 - 12 weeks while only 5% were delayed more than 12 weeks to start their adjuvant chemotherapy. Sociodemographic problems and long residential distance to institution represented the most common cause of chemotherapy delay, while the second cause was system related as late referral and prolonged time needed to get governmental insurance support.

Keywords: Adjuvant Chemotherapy, Non Metastatic Breast Cancer

INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer deaths in women worldwide, accounting for 23% of total cancer cases and 14% of all cancer related mortalities (McGuire et al., 2015).

The lifetime risk of developing breast cancer for women is one eighth. However, >40% of the affected patients are >65 of age account for almost 60% of the total deaths from breast cancer worldwide (Siegel et al., 2014).

In Egypt, breast cancer is the most common type of cancer in females that counts 38.8% of all cancers in females where the age-specific incidence rates show a progressive increase after the age of 30 years, to reach a sharp peak at the age group of 60-64 years (*Ibrahim et al.*, 2014).

The availability of early detection breast cancer screening programs has resulted in increased breast cancer detection rates for all age groups (Gotzsche and Nielsen, 2006).

Female gender is the most important risk factor for breast cancer. Men can develop breast cancer, but the risk for females is about 100 times greater (American cancer society, 2014).

As women advances in age, the risk increases, Caucasian women are slightly more likely to develop breast cancer than

African-American, although African Americans are more likely to die from this disease (American Cancer Society, 2014).

Family history and certain gene mutations strongly increase risk of recurrence. An estimated 5% to 10% of all breast cancers are directly attributable to inherited gene mutations as BRCA1 or BRCA2 genes (American cancer Society, 2014).

Using combined hormone therapy after menopause (estrogen and progesterone) increase risk, also certain reproductive factors as giving birth to a first child after age 30, nulliparity, early menarche and late menopause (Chen et al., 2013).

Early stage breast cancers can be completely resected by Surgery followed by adjuvant treatment and that approach has been the gold standard for breast cancer treatment for a long time (Miller et al., 2014).

Adjuvant treatment modalities improve disease free survival (DFS) and overall survival (OS) in breast cancer patients (Bergh et al., 2001).

Adjuvant treatments for breast cancer can include chemotherapy, hormonal therapy, human epidermal growth factor receptor (HER2)-directed therapies, and radiation (Murtuza et al., 2014).

Chemotherapies are further subdivided into major cytotoxic classes: anti-metabolites, anthracyclines, taxanes, and others, the major endocrine therapies were tamoxifen, aromatase inhibitors, and ovarian suppression (by luteinizing hormone-releasing hormone agonists) or ovarian ablation (by surgery or radiation). For HER2-positive cancers, trastuzumab was the only biologic or targeted agent that was found to have sufficient evidence to be included in the international guideline recommendations (Gandhi et al., 2014).

The proper timing of commencement of adjuvant chemotherapy has been studied for decades, there is in fact a biologic rationale to start chemotherapy as soon as possible after the removal of the primary tumor, however the issue of timing has not received much recent attention from physicians and patients and consequently practice has not changed substantially (Senkus et al., 2013).

This biological rational is supported by Gunduz's et al. (1979) murine model demonstrating a phase of accelerated growth of residual disease after resection of the primary tumor and the mathematical modeling by Goldie et al. (1979) demonstrating increasing chemotherapy resistance with time (Karen et al., 2014).

Clinical trials demonstrating that gaining the adjuvant chemotherapy benefit generally require it to be administered