

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Shams of the Shame of the S شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

A study on the critical temperature for pitting potential of some stainless steel in chloride media

A Thesis
Presented To
The Faculty of Science
Ain Shams University

By
Abeer Esmat Hafez El Meleigy
B. Sc., M. Sc.

For
The Degree of Ph.D.
Physical Chemistry

National Research Centre

1999

Bocis

Approval Sheet

Name: Abeer Esmat Hafez EL Meleigy

Title: A study on the critical temperature for

pitting potential of some stainless steel in

chloride media

Supervisors

Prof. Dr. S. S. Abd El Rehim

Prof. Dr. H. A. El Shayeb

Prof. Dr. M. M. Badran

Approved

Hassan E

Mervat

Credit

Prof. Dr. Saad, Hassan

Head of Chemistry Department

ACKNOWLEDGEMENT

The author wishes to express her thanks to Prof. Dr. S.S. Abd El Rehim, Professor of Physical Chemistry, Faculty of Science, Ain Shams university for his interest in the work, for encouragement and support and for sponsoring the thesis to the university.

The work presented in this thesis was suggested to the author by Prof. Dr. H.A. El Shayeb, Professor of Physical Chemistry, National Research Centre. It is the pleasant task of the author to acknowledge his guidance, help and criticism.

The author wishes to thank Prof. Dr. M.M. Badran Professor of Physical Chemistry, National Research Centre, for her help and encouragement.

The author wishes also to thank her colleagues in the Laboratory of Electrochemistry and Corrosion for their help.

CONTENTS

	Page
List of Figures	I
List of Tables	XXII
Abstract	;
Chapter I Introduction	1
Chapter II Experimental	19
Chapter III Results and Discussion	:
Open Circuit Potential	
III. 1. Effect of NaCl concentration	23
III. 2. Effect of Na ₂ SO ₄ concentration	.37
III. 3. Effect of addition of Na ₂ SO ₄ to 0.1 M NaCl	39
III. 4. Effect of addition of NaCl to 0.1 M Na ₂ SO ₄	44
III. 5. Effect of temperature	51
Chapter IV Potentiodynamic Polarization	į
IV. 1. Effect of chloride	69
IV. 2. Effect of temperature	86
IV. 3. Effect of sulphate	101
IV. 4. Effect of temperature	112
IV. 5. Effect of addition of Na ₂ SO ₄ to 0.1 M NaCl	123
IV. 6. Effect of addition of NaCl to 0.1 M Na ₂ SO ₄	131

IV. 7. Effect of temperature in 0.1 M NaCl + 0.1 M Na ₂ SO ₄	140
IV. 8. Effect of scanning rate	148
Chapter V Effect of Some Additives on Stainless Steels	
V. 1. Effect of addition of CrO ₄	159
V. 2. Effect of temperature	168
V. 3. Effect of addition of MoO ₄	178
V. 4. Effect of temperature	186
V. 5. Effect of addition of NO ₃	193
V. 6. Effect of temperature	201
V. 7. Effect of addition of ClO ₂	209
V. 8. Effect of temperature	216
Summary and Conclusions	224
References	231
Arabic Summary	

LIST OF FIGURES

•	Page
Fig (1) Variation of the open circuit potential of Alloy	I
in different concentrations of NaCl as a	a
function of time.	27
Fig (2) Variation of the open circuit potential of Alloy	7
II in different concentrations of NaCl as a	ì
function of time.	28
Fig (3) Variation of the open circuit potential of Alloy	7
III in different concentrations of NaCl as a	l
function of time.	29
Fig (4) Variation of the open circuit potential of Alloy	
IV in different concentrations of NaCl as a	l.
function of time.	30
Fig (5) Relation between E _{st} and Log C of NaCl for	•
AlloyI, II, III and IV.	31
Fig (6) E- log t in different concentration of NaCl for	
a) Alloy I b) Alloy II	35

Fig (/) E- log t in different concentration of NaCl for	
a) Alloy III b) Alloy IV	36
Fig (8) Variation of the open circuit potential in different concentrations of Na ₂ SO ₄ as a function of time for Alloy I, II, III and IV.	38
Fig (9) Relation between E _{st} and Log C of Na ₂ SO ₄ for	
Alloy I, II, III and IV (a).	
Relation between E _{st} and Log C of Na ₂ SO ₄	
plus 0.1 M NaCl (b).	40
Fig (10) Variation of the open circuit potential of Alloy I in 0.1 M NaCl with different concentrations of Na ₂ SO ₄ as a function of time.	41
or rugo of as a fanotion of time.	41
Fig (11) Variation of the open circuit potential of Alloy II in 0.1 M NaCl with different concent-	
rations of Na ₂ SO ₄ as a function of time.	42
Fig (12) Variation of the open circuit potential in 0.1 M NaCl with different concentrations of	

		Na ₂ SO ₄ as a function of time.	
	-	a) Alloy III b) Alloy IV	43
Fig	(13)	Variation of the open circuit potential of	
		Alloy I in 0.1 M Na ₂ SO ₄ with different	
		concentrations of NaCl as a function of time	45
Fig	(14) V	Variation of the open circuit potential of Alloy	
		II in 0.1 M Na ₂ SO ₄ with different	
		concentrations of NaCl as a function of	
		time.	46
Fig	(15) V	Variation of the open circuit potential of Alloy	
		III in 0.1 M Na ₂ SO ₄ with different	
		concentrations of NaCl as a function of	
		time.	47
Fig	(16) V	Variation of the open circuit potential of Alloy	
		IV in 0.1 M Na ₂ SO ₄ with different	
		concentrations of NaCl as a function of	
		time.	48
Fig	(17)	Relation between E _{st} and Log C of NaCl plus	

0.1	M Na ₂ SO) ₄ for	Allov	LII.	Ш	and	IV.
V. 1	IVI INAZON	<i>7</i> 4 IUI	Alluy	i, ii,	Ш	anu.	LV

311	

Fig (18) Variation of the open circuit potential of Alloy	
I in a) 0.1 M Na ₂ SO ₄ + 0.5 M NaCl b) 0.1	
Na ₂ SO ₄ + 1 M NaCl as a function of time	
and at different temperatures.	52
Fig (19) Variation of the open circuit potential of Alloy	
I in a) 0.1 M Na ₂ SO ₄ + 3 M NaCl b) 0.1	
Na ₂ SO ₄ + 4 M NaCl as a function of time	
and at different temperatures.	53
Fig (20) Relation between E _{st} and different	
temperatures of 0.1 M $Na_2SO_4 + 0.5$, 1, 3,	
and 4 M NaCl for	
a) Alloy I b) Alloy II c) Alloy III	55
Fig (21) Variation of the open circuit potential of Alloy	
II in a) 0.1 M Na ₂ SO ₄ + 0.5 M NaCl b) 0.1	
Na ₂ SO ₄ + 1 M NaCl as a function of time	
and at different temperatures	57

Fig (22) Variation of the open circuit potential of Alloy	
II in a) 0.1 M $Na_2SO_4 + 3$ M $NaCl$ b) 0.1	
Na ₂ SO ₄ + 4 M NaCl as a function of time	
and at different temperatures	58
<i>.</i>	
Fig (23) Variation of the open circuit potential of Alloy	
III in a) 0.1 M Na ₂ SO ₄ + 0.5 M NaCl b) 0.1	
Na ₂ SO ₄ + 1 M NaCl as a function of time	
and at different temperatures.	60
Fig (24) Variation of the open circuit potential of Alloy	
III in a) $0.1 \text{ M Na}_2\text{SO}_4 + 3 \text{ M NaCl b}) 0.1$	
$Na_2SO_4 + 4 M NaCl$ as a function of time	
and at different temperatures.	61
Fig (25) Variation of the open circuit potential of Alloy	
IV in a) $0.1 \text{ M Na}_2\text{SO}_4 + 0.5 \text{ M NaCl b}) 0.1$	
$Na_2SO_4 + 1$ M NaCl as a function of time and	
at different temperatures.	63
Fig (26) Variation of the open circuit potential of Alloy	
IV in a) $0.1 \text{ M Na}_2\text{SO}_4 + 3 \text{ M NaCl b} + 0.1$	
$Na_2SO_4 + 4$ M NaCl as a function of time and	