Role of computed tomography (CT) in diagnosis of pericardial diseases

Essay

Partial Fulfillment of the Master Degree in Radiodiagnosis

Submitted by

Peter Joseph Abd El Nour Goubrial

M.B.B.Ch
Faculty of Medicine, Ain Shams University

Supervised By

Prof. Dr. Hanan Mohamed Hanafy

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Sherine Sharara

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2017

First of all thanks to Allah the most kind and the most merciful.

I wish to express my deepest thanks, gratitude and profound respect to my honoured Professor Dr. Hanan Mohamed Hanafy, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. I consider myself fortunate to work under her supervision. Her constant encouragement and constructive guidance were of paramount importance for the initiation, progress and completion of this work.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Dr.Sherine Sharara**, lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University for dedicating much of her precious time to accomplish this work and for her keen advices throughout the study.

I would like to thank my family especially my Farents and my Wife who encouraged and supported me all the time, to them I dedicate this work.

List of Contents

Page No.
Introduction1
Aim of the Work4
Chapter (1) Anatomy5
Chapter (2) Pathology23
Chapter (3) Principles of Computer Tomography39
Chapter (4) Imaging of the Normal Pericardium51
Chapter (5) Role of CT in diagnosis of Pericardial diseases
Summary74
Conclusion78
References
Arabic Summary

List of Figures

No.	Title	Page
1	Position of the pericardium before the rotation	6
2	Position of the pericardium after the rotation	6
3	Posterior wall of the pericardial sac	9
4	Pericardial fluid	11
5	Normal pericardium CT	13
6	Normal superior pericardial recess	14
7	Drawing illustrates a cutaway view of the anterior aspect of the heart	16
8	Drawing illustrates the pericardial sac with the heart removed	17
9	Axial contrast-enhanced cardiac-gated images of the heart	17
10	Sagittal and coronal reformatted images from CT data	18
11	Contrast-enhanced CT scan shows superior aortic recess	20
12	Axial contrast-enhanced CT scan shows transverse sinus & left	21
	pulmonic recess	
13	Axial contrast-enhanced CT scan shows posterior pericardial recess	22
14	Hemopericardium: Gross, an excellent in situ view	25
15	Fibrinous pericarditis: Gross, natural color	27
16	Mature teratoma, Photograph of a cut specimen	31
17	Pericardial mesothelioma, Photograph of cut specimen autopsy	33
18	Gross picture of pericardial cyst	36
19	Multiplanar reconstruction image showing the heart and the pericardium	45
20	Coronal MIP of a contrast-enhanced CT	46
21	3D rendering of the heart	47

22	A 2D parasternal long axis image of a normal heart	52
23	Axial contrast-enhanced CT scan showing the normal pericardium	53
24	MRI of normal pericardium	54
25	Axial CT scan showing congenital absence of the pericardium	56
26	Cardiac CT scan showing congenital absence of the pericardium	57
27	Axial contrast-enhanced CT scan showing an effusion	58
28	Axial contrast-enhanced CT scan showing an enhancing effusion	58
29	Axial contrast-enhanced CT scan shows a loculated pericardial effusion	59
30	Spiral thoracic post-contrast CT scan with epicardial fat stranding	60
31	Cardiac CT showing pericardial calcification	62
32	Trans-thoracic echocardiography showing large circumferential	63
	pericardial effusion	
33	Contrast-enhanced CT chest showing pericardial teratoma	64
34	Axial contrast-enhanced chest CT scan with pericardial mesothelioma	66
35	Post Contrast-enhanced CT of chest showing cardiac sarcoma	67
36	Axial CT image showing lymphoma in the right atrio-ventricular groove	68
37	Axial CT Chest of a Patient With Metastatic Disease	69
38	Post Contrast axial CT scan showing a large bronchogenic carcinoma	70
39	Contrast-enhanced axial CT scan showing a pericardial effusion with	71
	placement of a small-bore catheter into the pericardium	
40	Axial contrast-enhanced CT image showing pericardial cyst	72
41	Axial CT scan of the lower thorax showing a Pericardial fat pad	72
42	Axial CT image showing a focal pericardial calcifications	73
43	Axial CT image showing pneumopericardium	73

List of Tables

No.	Title	Page
1	Imaging findings in pericardial tamponade	61
2	Imaging findings in CCT and CMR in constrictive pericarditis	63

List of Abbreviations

2D/3D Two/ Three dimensional AMI Acute myocardial infarction

bSSFP Balanced steady state free precession

BTFE Balanced turbo field echo
CCT Cardiac computed tomography

Cine Cinema

CK Creatine kinase

CMR Cardiac magnetic resonance
CT Computed tomography
CTR Cardio-thoracic ratio

e.g. For example

ECG Electro-cardio-graphy (Electrocardiogram)

esp. Especially
et al And others
Fig. Figure
Figs. Figures
GRE Gradient echo

HIV Human immunodeficiency virus

i.e. That is

IVC Inferior vena cava
IVS Inter-ventricular septum

LA Left atrium LV Left ventricle

MFH Malignant fibrous histiocytoma

MI Myocardial infarction

ml Milliliter

mm Hg Millimeter mercury

MRI Magnetic resonance imaging

MVP Mitral valve prolapse PA Pulmonary artery

PA CXR Postero-anterior chest x-ray

PMN Poly-morph-nuclear white blood cells

PPD Purified protein derivative

RA Right atrium

RPA Right pulmonary artery

RV Right ventricle SE Spin echo

SLE Systemic lupus erythematosus

SVC Superior vena cava
T.B. Tubercle bacillus

Tab. Table

TTE Trans-thoracic echocardiography

Abstract

Pericardial disease is an important cause of morbidity and mortality in patients with cardiovascular disease. Inflammatory diseases of the pericardium constitute a spectrum ranging from acute pericarditis to chronic constrictive pericarditis. Other important entities that involve the pericardium include benign and malignant pericardial masses, pericardial cysts, and diverticula, as well as congenital absence of the pericardium (*Yared et al., 2010*)

Echocardiography is the method of choice for evaluating most pericardial diseases. When competently performed in acoustic windows, patients with good echocardiography accurately detects all pericardial effusions and provides clinically relevant information about their size and hemodynamic importance. The technique is less reliable than magnetic resonance imaging (MRI) and computed tomography (CT) in detecting pericardial thickening/constriction and calcification as well as small loculated effusions, but is still extremely useful in these conditions. (Foster et al., 2011)

In the evaluation of pericardial diseases, computed tomography (CT) and magnetic resonance (MR) imaging traditionally have been used as adjuncts to echocardiography. However, CT is particularly useful as sensitive and noninvasive

methods for evaluating loculated or hemorrhagic pericardial effusion, constrictive pericarditis, and pericardial masses. CT provides excellent delineation of the pericardial anatomy and can aid in the precise localization and characterization of various pericardial lesions, including effusion, constrictive pericarditis and pericardial thickening, pericardial masses, and congenital anomalies such as partial or complete absence of the pericardium. It provides a larger field of view than does echocardiography, allowing the examination of the entire chest and detection of associated abnormalities in the mediastinum and lungs. Softtissue contrast on CT scans is superior to that echocardiograms. Given the many potential applications of these modalities in the evaluation of pericardial diseases, familiarity with the CT features of these diseases is important.

(Wang et al., 2003)

The pericardium, consisting of a fibroserous sac that encloses the heart, is routinely imaged on CT. Multidetector technology, in allowing rapid acquisition of volumetric data in high resolution and multiplanar reformation, has improved anatomic imaging. Imaging with narrow collimation results in improved delineation of cardiovascular anatomy. The pericardial space normally contains a small amount of fluid (15–20 ml), and the fluid-filled recesses and sinuses can be misinterpreted as adenopathy or abnormality of an adjacent mediastinal structure.

In oncologic imaging, staging and prognostic implications of fluid in a pericardial recess misinterpreted as adenopathy can significantly alter management and therapy (*Truong et al.*, 2003).

AIM OF WORK

The aim of this essay study is to evaluate the role of CT in the diagnosis of pericardial diseases and to show the limitations of other modalities.

Key words

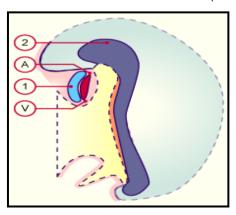
Role - CT- pericardial diseases

CHAPTER (1) ANATOMY


Pericardial Embryology

In the 25th day; the embryo consists of three cell layers, ectoderm, mesoderm and endoderm. The lateral plate mesoderm becomes split in the extraembryonic region into two layers, one covering the umbilical vesicle (The visceral layer) which forms the **splanchnopleura** together with the adjacent endoderm. The other one covers the amniotic cavity (The parietal layer) which together with the adjacent ectoderm is named **somatopleura**. As a result of uneven growth of the lateral plate mesoderm, it creates small, fluid-filled cleavages. These spaces fuse forming the pericardial cavity in the area of the head that corresponds to the cranial part of the U-shaped intraembryonic coelom. From the 25th day to the 28th day; the formation of the head fold occurs via cranial flexion of the embryo through a 180 degree rotation, making, the future outflow tract (arterial pole), which lies caudally to the inflow tract (venous pole) at the start of the cardiac formation, lies cranially. (Singh, 2014)

The pericardial cavity expands on both sides of the cardiac anlage and invaginates the myocardiac mantle with the cardiac loop, resulting in the formation of the **mesocardium** being


transiently formed on the dorsal side of the cardiac loop.

(Shabetai, 2012)

Fig. 1 Position of the pericardium before the rotation. The pericardial cavity as well as the cardiogenic plate lie cranially to the embryonic anlage. The pericardial cavity is found dorsal to the cardiogenic tissue. The venous (inflow tract) parts of the cardiac anlage is found more cranially than the arterial (outflow tract). **A**=Arterial part (outflow tract), **V**=Venous part (inflow tract), **1**=Pericardial cavity, **2**=Cranial end of the embryo.

(Moore et al., 2015)

Fig. 2 Position of the pericardium after the rotation. After the 180 degree rotation, the pericardial cavity is found ventral to the cardiac anlage, also the venous part (inflow tract) of the cardiac anlage now lies caudal to the arterial