

Evaluation of Ultrasonographic Findings in Patients of Interstitial Lung Diseases with or Without Treatment

Thesis

Submitted for Partial Fulfillment of Master

Degree in Chest Diseases

Вy

Nermen Ahmed Saleh Abd El Ghani

M.B., B. Ch

Supervised By

Professor/ Mohamed Sherif Elbouhy

Professor of Pulmonary Medicine
Faculty of Medicine- Ain Shams University

Professor/ Samar Hassan sharkawi

Prof. of Pulmonary Medicine

Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة التوبة الآية (١٠٥)

- First and above all, my deepest gratitude and thanks to Allah for achieving that work in my life.
- Words stand short when coming to express my deep gratitude and great thanks to **Prof.** Mohamed Sherif Elbouhy Professor of Chest Diseases, Faculty of Medicine- Ain-Shams University for his choice of this new topic, continuous encouragement, sincere advice, and cooperation in all steps of this work.
- I am deeply grateful to Professor. Samar Hassan sharkawi Assistant Professor of Chest Diseases, Faculty of Medicine- Ain-Shams University who devoted his effort and experience to facilitate the production of this work, for his valuable knowledge, great help, and guidance during this work and reviewing my work till the end. Words of thanks are little to express my gratitude to her for giving me the help to learn something new and useful.
- Finally, Id like to express my deep thanks to my family who were beside me giving me support to complete this work.

💹 Nermen Ahmed Saleh Abd El Ghani

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
• Introduction	1
Aim of the study	4
Review of Literature	
- Chapter 1: Interstitial lung diseases	5
* Idiopathic pulmonary fibrosis (IPF)	7
- Chapter 2: Chest Ultrasonography	29
Patients & Methods	97
• Results	107
• Discussion	128
• Summary	142
• Conclusion	148
• limitations of the study	149
Recommendations	150
References	151
Arabic summary	

List of Abbreviations

AAL : Anterior Axillary Line

AECs: Alveolar epithelial cells

AIP : Acute interstitial pneumonia

AIS : Alveolar interstitial syndrome

ALAT: Latin American Thoracic Association

ATS : American Thoracic Society

BAL : Bronchoalveolar lavage

BMI : body mass index

B-mode: Brightness mode

CAP : Community-acquired pneumonia

Cm : Centimeter

COP : Cryptogenic organizing pneumonia

COPD : Chronic obstructive pulmonary disease

CT : Computed tomography

CTPA : CT pulmonary angiography

CXR : Chest radiograph

DIP : Desquamative interstitial pneumonia

DLCO: diffusing capacity for carbon monoxide

DPLD : Diffuse parenchymal lung disease

ERS: European Respiratory Society

FDA : Food and Drug Administration

FEV1 : Forced Expiratory Volume

E List of Aberrations &

FVC: Forced Vital Capacity

GERD : Gastro esophageal reflux disease

GGO : Ground Glass Opacification

HRCT: High Resolution Computed Tomography

ICU: Intensive Care Unit

IIP : Idiopathic Interstitial Pneumonia

ILD : Interstitial Lung Diseases

IPF : Idiopathic Pulmonary Fibrosis

JRS: Japanese Respiratory Society

KG: Kilo Gram

LIP : Lymphocytic interstitial pneumonia

LTOT : Long-term oxygen therapy

LTx : Lung Transplantation

MDCT : Multi-detector Computed Tomography

MHz : Megahertz

ml : Milliliter

mm: Millimeter

mmHg : Millimeter of Mercury

M-mode : Motion Mode

Mmol/L : Millimole/liter

MPM: Malignant Pleural Mesothelioma

MRI : Magnetic Resonance Imaging

NAC : N-Acetylcysteine

NIH : National Institutes of Health

E List of Aberrations &

No. : Number

NSIP : Non Specific Interstitial Pneumonia

PA : Posteroanterior

PAL: Posterior Axillary Line

PCP: Pneumocystis Pneumonia

PE: Pulmonary Embolism

PFT: Pulmonary Function Tests

PPFE: Pleuro Parenchymal Fibroelastosis

RB-ILD: Respiratory Bronchiolitis-Interstitial Lung

Disease

Rt. : Right

SD : Standard Deviation

TB: Tuberculosis

TGFβ : transforming Growth Factor Beta

TLC: total Lung Capacity

TUS: Thoracic Ultrasound

UIP : Usual Interstitial Pneumonia

US : Ultrasound

USA : United States of America

VC : Vital Capacity

2D : Two-dimensional

6MWT : 6-minute Walk Test

List of Tables

Table No.	Title	Page
1	Demographic data of the study group	107
2	Thoracic US parameters in studied groups	108
3	Correlations of the distance between B-lines, Spirometry, partial arterial oxygen pressure, and HRCT Semi-quantitative scoring findings in ILD without steroid treatment	109
4	Correlations of ultrasonographic pleural findings and severity grades of HRCT Semi-quantitative scoring findings in ILD without steroid treatment	110
5	Correlations of pleural findings and severity grades of PFT restrictive pattern in without steroids ILD	111
6	Correlation of pleural thickness in (mm) and po2 in without steroids ILD	112
7	Correlations of pleural findings and po2 in without steroids ILD	113
8	Correlations of the distance between B-lines, Spirometry, partial arterial oxygen pressure, and HRCT Semi-quantitative scoring findings in ILD with steroid treatment	114

🕏 List of Tables 🗷

Table No.	Title	Page
	Correlations of ultrasonographic pleural findings	
9	and severity grades of HRCT Semi-quantitative	115
	scoring findings in ILD with steroid treatment	
	Correlations of pleural findings and severity	
10	grades of PFT restrictive pattern in with steroids	116
	ILD	
11	Correlation of pleural thickness in (mm) and po2	117
11	in with steroids ILD	117
12	Correlations of pleural findings and po2 in with	118
12	steroids ILD	110
	Spirometry, partial arterial oxygen pressure,	
13	HRCT Semi-quantitative scoring findings and	119
13	distance between B-lines among the studied	117
	patients	
14	Ultra-sonographic pleural findings among the	120
17	studied patients	120
15	Relation between ultra-sonographic B line	121
	distance and I.L.D subtypes	121
16	Ultra-sonographic pleural findings according to	122
	ILD subtypes	122

List of Figures

Figure No.	Title	Page
1	New classification of IIPs	8
2	Clubbing of the fingers in idiopathic pulmonary fibrosis	10
3	Etiology and pathobiology of Idiopathic Pulmonary Fibrosis (IPF)	14
4	A chest radiograph of a patient with IPF. Note the small lung fields and peripheral pattern of reticulonodular opacification.	17
5	High-resolution computed tomography scans of the chest of a patient with IPF. The main features are of a peripheral, predominantly basal pattern of coarse reticulation with honeycombing	18
6	Photomicrograph of the histopathological appearances of usual interstitial pneumonia.	20
7	The denser a material is the more it reflects the sonographic waves. Fluid (like blood) transmits ultrasound waves and have minimum waves reflected back.	33
8	The time gain control adjustment panel on a typical US system	35

Figure No.	Title	Page
9	Shows various ultrasound probes	37
10	A linear array transducer. Parallel pulses are	39
	generated perpendicular to the transducer	
	head. It provides a rectangular field of view.	
	B Curvilinear transducer. Diverging pulses	
	radiating from the convex transducer head.	
11	Transducer orientation during thoracic	41
	ultrasound examination.	
12	Showing A-lines	43
13	Abnormal, discrete laser-like vertical hyper	44
	echoic reverberation artifacts that arise from	
	the pleural line (B-lines)	
14	Bat sign. The diagonal arrows indicate the	46
	curved margin of the ribs (bat wings) and	
	the vertical arrow indicates the pleural line	
	(bat body)	
15	Seashore sign. The sign appears at the right	47
	of the screen (time-motion mode).	
16	Stratosphere sign on M mode. Horizontal	48
	lines above and below the pleural line	
	(arrow), also called the barcode sign	

Figure No.	Title	Page
17	Sonogram (7.5-MHz linear probe) shows	49
	lung point. Horizontal reverberation	
	artifacts (vertical arrows) are interrupted by	
	reappearance of irregular, fragmented,	
	thickened pleural line with comet-tail	
	artifacts (oblique arrows)	
18	Normal sonographic appearance of the	53
	pleural line	
19	Transhepatic examination. A: Convex probe	54
	placed subcostally from the right. B:	
	Corresponding sonographic image, Lung is	
	indicated as a mirror artifact above the	
	diaphragm	
20	Localized pleural thickening. The absence	55
	of the fluid color sign proves the absence of	
	pleural effusion. Therefore, the anechoic	
	layer is pleural thickening	
21	a) Chest x-ray shows right sided massive	58
	pleural effusion caused by pleural	
	metastasis. b) Chest ultrasonography image,	
	longitudinal view shows massive pleural	
	effusion including echogenic masses (M)	

Figure No.	Title	Page
22	Intercostal sonogram of the left hemi thorax shows prominent hypoechoic nodular masses (m) adjacent to the diaphragmatic pleura (arrows) in 70-year-old man with lung cancer	59
23	Undulating movements of the lung and visceral pleura in a pleural effusion generate the sinusoid sign in M-mode ultrasound	65
24	The sonographic appearances of pleural effusions. a , Anechoic pattern. b , Homogeneously echogenic pattern. c , Complex septated pattern. d , Complex nonseptated pattern	67
25	Flow-chart showing the procedure for the sonographic diagnosis of pneumothorax using a combination of the four key signs: lung sliding, B lines, lung point and lung pulse	68
26	The ultrasound examination for pneumothorax should be performed on a single site on both sides of the upper chest (white crosses), where air should be collected for reasons of gravity	70

Figure No.	Title	Page
27	(a) in case of lack of sliding and B lines in	70
	the anterior chest (black crosses), the probe	
	is moved to the lateral areas looking for	
	sudden visualization of a respiratory pattern	
	(appearance of lung sliding and B lines), the	
	lung point (white cross) (b) Corresponding	
	CT scan showing right sided pneumothorax.	
	The black arrows show two chest areas	
	where lung sliding cannot be visualized.	
	The white arrow indicates the area where	
	sliding is again visualized, the lung point	
28	Showing Peripheral bronchial carcinoma.	73
	Posterior intercostal scan shows a	
	hypoechoic consolidation with relatively	
	well-delineated borders. The air	
	bronchogram is absent	
29	Showing Pulmonary metastasis. Posterior	75
	intercostal scan shows a round-shaped,	
	clear-bordered lesion	
30	Pneumonia in the left upper lung lobe: large	76
	liver-like lung consolidation with intensive	
	reflexes of the aereated brochial tree, the	
	bronchoaerogram	

Figure No.	Title	Page
31	Showing Pulmonary infarction; a typical	81
	triangular-shaped peripheral hypoechoic	
	lesion	
32	Pleural effusion with compressive	83
	atelectasis (arrow). The atelectasis has	
	sharp and smooth margins, is moderately	
	echoic, and has a concave shape (like a	
	jelly bag cap)	
33	The areas of thoracic ultrasonography	89
	considered in the study. Areas 1 and 2:	
	upper anterior and lower anterior; areas 3	
	and 4: upper lateral and basal lateral. Each	
	area was the same on right and left side.	
	AAL, anterior axillary line; PAL, posterior	
	axillary line	
34	Sonogram (linear scanner) from a 72-year-	90
	old man with established idiopathic	
	pulmonary fibrosis. Examination with a	
	linear scanner shows an irregular,	
	fragmented, and thickened pleural line with	
	numerous B-Line artifacts	
35	Another scan of the 72-year-old man with	91
	established idiopathic pulmonary fibrosis	