

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Engineering

# Optimal Demand Energy Management for Smart Distribution Networks

A Thesis submitted in partial fulfillment of the requirements of the degree of
Master of Science in Electrical Engineering
(Electrical Power and Machines Engineering)

by

## Mohamed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2012

Supervised By

Associate Professor Walid Aly El-Khattam
Assistance Professor Amr Magdy Abden



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Engineering

# Optimal Demand Energy Management for Smart Distribution Networks

by

### Mohamed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2012

### **Supervising' Committee**

| Name and Affiliation                                   | Signature |  |
|--------------------------------------------------------|-----------|--|
| Associate Professor Walid Aly Seif El-Islam El-Khattam |           |  |
| Electrical Power and Machines Department,              |           |  |
| Faculty of Engineering, Ain Shams University           |           |  |
| Assistance Professor Amr Magdy Abden                   |           |  |
| Electrical Power and Machines Department,              |           |  |
| Faculty of Engineering, Ain Shams University           |           |  |

Date: 9 November 2016



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Engineering

# Optimal Demand Energy Management for Smart Distribution Networks

by

### Mohamed Wagdy El-Desouki Abdel-Ghany

Bachelor of Science in Electrical Engineering (Electrical Power and Machines Engineering) Faculty of Engineering, Ain Shams University, 2012

#### **Examiners' Committee**

| Name and Affiliation                                   | Signature |
|--------------------------------------------------------|-----------|
| Professor Omar Hanafy Abdalla                          |           |
| Electrical Power and Machines Department,              |           |
| Faculty of Engineering, Helwan University.             | ••••••    |
| Professor Mahmoud Abd EL-Hamid Mohamed Mostafa         |           |
| Electrical Power and Machines Department,              |           |
| Faculty of Engineering, Ain Shams University           | ••••••    |
| Associate Professor Walid Aly Seif El-Islam El-Khattam |           |
| Electrical Power and Machines Department,              |           |
| Faculty of Engineering, Ain Shams University           |           |

Date: 9 November 2016

## **Statement**

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

| Signature |  |
|-----------|--|
|           |  |

Mohamed Wagdy El-Desouki Abdel-Ghany

Date: 9 November 2016

## **Acknowledgments**

The effort in putting together this research work has been shared by many people. Foremost, I am grateful of Allah for blessing me with intellect and knowledge to pursue this research work. I would like to thank Faculty of Engineering Ain Shams University for facilitating the platform for conducting this research work.

I sincerely thank my advisors *Dr. Walid El-Khattam* and *Dr. Amr Magdy* for giving me the opportunity to pursue my research under their guidance. It has been a great learning experience working with them. I would also like to express my deepest gratitude towards them for offering instructive advices at all times, treating me with endurance and constantly encourage me to improve during the course of this research.

Last, but not the least, I thank my family, fiancé, and friends who have been a constant source of encouragement and support for me throughout my research journey.

I am grateful of all the people who have supported, encouraged and helped me on this research.

Mohamed Wagdy El-Desoukí Abdel-Ghany

## **Researcher Data**

Name : Mohamed Wagdy El-Desouki Abdel-Ghany

Date of birth : 20/09/1989

Place of birth : Cairo, Egypt

Last academic degree : Bachelor Degree

Field of specialization : Electrical Power Engineering

University issued the degree : Ain Shams University

Date of issued degree : July, 2012

: Teaching Assistant, Electrical Power and **Current job** 

> Machines Department, Faculty Engineering, Ain Shams University, Cairo,

Egypt.

## **Abstract**

Utilities all over the world consider the wide spread integration of renewable energies in modern power systems which will reduce cost and minimize the environmental impact. The main problem that faces these kinds of resources is their nature which has changing profile curves of the power generated. Consequently, they have an effect on the ability to face the needed demand. One of the solutions to solve this mismatching issue between both the needed demand curves and available resource curves is through reshaping the demand curves to match the available source curves.

Utilities use Demand Side Management (DSM) programs to help in reducing their peak power purchases on the wholesale market. Consequently DSM programs can decrease the bill for customers. On the other hand DSM programs limit the cost that utilities needed to rebuild new stations for generation, transmission and distribution.

This thesis proposes implementation for Genetic Algorithm (GA) technique in solving the problem for mismatching of supply and load curves using DSM program. The proposed algorithm is implemented on a day with realistic demand and supply profiles.

The DSM strategy is implemented on the demand taking into consideration all different type of loads which are divided into different types of loads residential, commercial and industrial loads.

The proposed DSM optimization algorithm is carried out in two directions:

### 1- Scenario A [Load Shifting]:

#### Case I:

Optimally maximizing the system LF through minimizes the gap area between the supply and the load curves. This process is carried out by shifting the load profile for all residential, commercial and industrial types.

#### Case II:

Optimally maximizing the system LF through minimizes the gap area between the supply and the load curves. Unlike case I, the load shifting is carried out for all types while taking into consideration two different Time of Use (ToU) tariff.

#### Case III:

Optimally maximizing the system LF through minimizes the gap area between the supply and the load curves. Unlike case I and case II, the load shifting is carried out based on a priority matrix (i.e. only for industrial type loads) and ToU constrains.

### 2- Scenario B [Valley Filling - Plug-in Hybrid Electric Vehicles (PHEVs)]:

### Case IV:

If the load shifting is not applicable, thus PHEVs can be used to supply the peak demand (i.e. supplying the shortage in the given utility supply at peak loads). This discharge is carried out at high prices while they are being charged (as loads) at off peak load (i.e. at low prices). Therefore, case IV optimally shifting the PHEVs charging time to minimize the charging cost while satisfying the required peak loads.

This thesis proposes solving the mismatch problem between the demand profiles and available sources profiles using GA technique. The obtained results from this thesis can be generalized to be applied in countries based on their load and available supply profiles. The countries can use the algorithm that proposed in this thesis to obtain the best match between the demand profiles and available sources profiles to maximizing the use of their renewable energy sources, maximizing the economic benefit and reducing their peak load demand.

**Key Words:** Demand Side Management, Genetic Algorithm, Negawatt

## **Table of Content**

### **Contents**

| Abstract                                                | i   |
|---------------------------------------------------------|-----|
| Table of Content                                        | iii |
| List of Tables                                          | v   |
| List of Figures                                         | vi  |
| List of Abbreviations                                   | ix  |
| Chapter 1 (Introduction)                                | 1   |
| 1.1 Introduction                                        | 1   |
| 1.2 Research Objectives                                 | 4   |
| 1.3 Layout of the Thesis                                | 6   |
| Chapter 2 (Literature Review)                           | 7   |
| 2.1 History of DSM                                      | 7   |
| 2.2 DSM within Utilities                                | 7   |
| 2.3 DSM Programs                                        | 8   |
| 2.4 Artificial Intelligent Technique: Genetic Algorithm | .11 |
| 2.4.1 What is Genetic Algorithm?                        | .11 |
| 2.4.2 Implementation Sequence                           |     |

| 2.4.3 Basic Genetic Algorithm                                | 12 |
|--------------------------------------------------------------|----|
| 2.5 Literature Review                                        | 14 |
| Chapter 3 (DSM Optimization Algorithm for Energy Management) | 21 |
| 3.1 Introduction                                             | 21 |
| 3.2 Mathematical Formulation                                 | 22 |
| 3.3 Case Study                                               | 25 |
| 3.4 Simulation Results                                       | 30 |
| 3.5 Price Sensitivity Analysis                               | 44 |
| Chapter 4 (Conclusion and Future Work)                       | 48 |
| 4.1 Conclusion                                               | 48 |
| 4.2 Future Work                                              | 49 |
| References                                                   | 50 |

## **List of Tables**

| Table 3. 1 | Case-I: load shifting optimization results      | 34  |
|------------|-------------------------------------------------|-----|
| Table 3. 2 | Case-II: Load shifting optimization results     | .38 |
| Table 3. 3 | Case-III: The shifting demand profiles priority | 39  |
| Table 3. 4 | Case-III: Load shifting optimization results    | .42 |
| Table 3. 5 | Case-IV: PHEVs optimization results             | .44 |

## **List of Figures**

| Figure 1.1  | Global Energy Production from 2000 to 20151                             |
|-------------|-------------------------------------------------------------------------|
| Figure 1. 2 | Percentage renewable energy Share in Electricity Production 2004-20142  |
| Figure 1. 3 | Electricity Supply System: Generation, Transmission and Distribution3   |
| Figure 2.1  | Peak clipping9                                                          |
| Figure 2.2  | Valley filling10                                                        |
| Figure 2.3  | Flexible load shape10                                                   |
| Figure 2.4  | Basic GA                                                                |
| Figure 2.5  | The proposed architecture for DSM systems                               |
| Figure 2.6  | Total consumption before DSM15                                          |
| Figure 2.7  | Total consumption after DSM                                             |
| Figure 2.8  | The typical path followed by the ASRs (a cycle)16                       |
| Figure 2.9  | Total demand before and after using multi objective GA16                |
| Figure 2.10 | Bidirectional communications between the power market and smart homes17 |
| Figure 2.11 | MERIT system structure                                                  |
| Figure 2.12 | Whole load shifting                                                     |
| Figure 2.13 | Partial load shifting                                                   |
| Figure 2.14 | Total loads before and after DSM20                                      |

| Figure 3.1  | Residential loads before DSM26                                           |
|-------------|--------------------------------------------------------------------------|
| Figure 3.2  | Commercial loads before DSM                                              |
| Figure 3.3  | Industrial loads before DSM                                              |
| Figure 3.4  | Demand/Supply match before DSM for multiple loads27                      |
| Figure 3.5  | ToU tariff for residential and commercial loads                          |
| Figure 3.6  | ToU tariff for industrial loads                                          |
| Figure 3.7  | Case-I: GA optimization convergence                                      |
| Figure 3.8  | Case-I: Residential loads before and after DSM31                         |
| Figure 3.9  | Case-I: Commercial loads before and after DSM31                          |
| Figure 3.10 | Case-I: Industrial loads before and after DSM                            |
| Figure 3.11 | Case-I: Demand/Supply match after DSM for multiple loads32               |
| Figure 3.12 | Case-I: Residual area at peak hours before and after DSM33               |
| Figure 3.13 | Case-II: GA optimization convergence                                     |
| Figure 3.14 | Case-II: Residential loads before and after DSM35                        |
| Figure 3.15 | Case-II: Commercial loads before and after DSM36                         |
| Figure 3.16 | Case-II: Industrial loads before and after DSM                           |
| Figure 3.17 | Case-II: Demand/Supply match after DSM                                   |
| Figure 3.18 | Case-II: Residual area at peak hours before and after DSM37              |
| Figure 3.19 | Case-III: GA optimization convergence                                    |
| Figure 3.20 | Case-III: Industrial loads before and after DSM40                        |
| Figure 3.21 | Case-III: Demand/Supply match After DSM40                                |
| Figure 3.22 | Case-III: Residual area at peak hours before and after DSM41  Page   vii |

| Figure 3.23 | Case-IV: Demand/Supply match before using PHEVs               | .43 |
|-------------|---------------------------------------------------------------|-----|
| Figure 3.24 | Case-IV: Demand/Supply match after using PHEVs                | .43 |
| Figure 3.25 | Effect of prices sensitivity before and after tariff increase | .45 |
| Figure 3.26 | Prices before tariff increase                                 | .45 |
| Figure 3.27 | Prices after increase tariff by 5 %                           | .46 |
| Figure 3.28 | Prices after increase tariff by 10 %                          | .46 |
| Figure 3.29 | Prices after increase tariff by 15 %                          | .47 |

## **List of Abbreviations**

**DSM** : Demand Side Management

**GA** : Genetic Algorithm

**LF** : Load Factor

**ToU** : Time of Use

PHEVs : Plug in Hybrid Electric Vehicles

**HVAC**: Heating Ventilation and Air Conditioning

MERIT: Mentored Experiences in Research, Instruction, and Teaching

TC : Total Cost