

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

**Electronics and Communication Engineering Department** 

#### **Analog Design Automation for Pipeline ADC**

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

#### **Mohamed El-Sayed Mohamed Madbouly**

B.Sc. of Electrical Engineering (Electronics and Communication Engineering) Ain Shams University, 2002

Supervised By

Prof. Dr. Hani Fikry Ragaei Dr. Mohamed Amin Dessouky

Cairo, 2009

**STATEMENT** 

This dissertation is submitted to Ain Shams University for the

degree of Master of Science in Electrical Engineering

(Electronics and Communication Engineering).

The work included in this thesis was carried out by the author,

a technical leader in IBM, Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

**Date:** November 5<sup>th</sup>, 2009

Name: Mohamed El-Sayed Mohamed Madbouly

## C.V.

Name of Researcher Mohamed El-Sayed Mohamed Madbouly

**Date of Birth** July 26<sup>th</sup>, 1980

**Place of Birth** Cairo, Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

**Date of Degree** July, 2002

#### **ABSTRACT**

Mohamed El-Sayed Mohamed Madbouly, Analog Design Automation for pipeline ADC, Master of Science Dissertation, Ain Shams University, 2009.

This thesis aims to use MATLAB in the analog design automation cycle of pipeline ADC, starting from system level till transistor level. A 10 bits pipeline ADC will be used as a case study. 1.5bit/stage architecture is used and the complete 10 bits pipeline ADC is modeled in MATLAB/SIMULINK with its non-idealities. The simulation results are compared between ideal and non-ideal models.

Challenges of simulating analog circuits in MATLAB are introduced and two solutions are proposed. S-Factor, a novel analog design automation technique is introduced to address highly non-linear analog circuits. Building circuit core simulator into MATLAB is the second solution. Folded cascode op-amp and latched comparator are two case studies presented to demonstrate the successfulness of the proposed solutions.

Equation based analog design automation technique is implemented into MATLAB. The transistor level analog design automation is based on BSIM3v3 model equations which are verified with SPICE and ELDO simulators. Circuit designer functions and optimization functions are built to help the analog designer in solving the analog circuits in the MATLAB environment.

The complete pipeline ADC ADA flow will start from the system level then stage level passing to circuit level and ending by transistor level. 10 bits pipeline ADC will be used as a case study in the verification of the complete ADA flow. Moreover, the implemented circuit schematics will be presented and design values for the used folded cascode op-amp will be shown. The simulation results for the 10 bits pipeline ADC will be demonstrated.

**Keywords:** equation-based, analog design automation, matlab, pipeline ADC, matspice, s-factor, folded cascode op-amp, latched comparator,

### **ACKNOWLEDGEMENT**

### الحمد شه رب العالمين

I would like to thank my supervisors Prof. Dr. Hani Fikry Ragaei and Dr. Mohamed Amin Dessouky for their guidance. I would like also to thank my friend Mohamed El-Nozahi for his efforts while developing CGOST.

Thanks to my parents for their care and support throughout my life. I would like also to thank my whole family for their support. I wish to thank my wife for being patient with me in the critical time I passed through and providing the encouragement that I really needed.

I would like also to express my gratitude to my professors, colleagues and friends who helped me during the past years.

## **Table of Contents**

| List of Fi | igure  | S                                               | iv |
|------------|--------|-------------------------------------------------|----|
| Chapter    | 1 Intr | oduction                                        | 1  |
| 1.1.       | Mot    | ivation                                         | 1  |
| 1.2.       | AD     | C Characteristics                               | 2  |
| 1.2.       | 1.     | Basic performance metrics                       | 2  |
| 1.2.       | 1.1.   | ADC Resolution                                  | 2  |
| 1.2.       | 1.2.   | Input Signal Swing                              | 2  |
| 1.2.       | 1.3.   | Sampling Frequency                              | 2  |
| 1.2.       | 1.4.   | Power Dissipation                               | 3  |
| 1.2.       | 2.     | Static Performance Metrics                      | 3  |
| 1.2.       | 2.1.   | Offset                                          | 3  |
| 1.2.       | 2.2.   | Gain error:                                     | 3  |
| 1.2.       | 2.3.   | Differential Non-Linearity (DNL):               | 3  |
| 1.2.       | 2.4.   | Integral Non-Linearity (INL):                   | 3  |
| 1.2.       | 3.     | Dynamic Performance Metrics                     | 4  |
| 1.2.       | 3.1.   | Signal-to-Noise ratio (SNR)                     | 4  |
| 1.2.       | 3.2.   | Signal-to-Noise-and-Distortion ratio (SNDR)     | 4  |
| 1.2.       | 3.3.   | Effective Number of Bits (ENOB):                | 5  |
| 1.3.       | Stat   | e-of-the-art in Pipelined ADC Design Automation | 5  |
| 1.4.       | The    | sis Outline                                     | 5  |
| Chapter 2  | 2 Sys  | tem Level ADA for Pipeline ADC                  | 7  |
| 2.1.       | Syst   | tem Level ADA Using MATLAB                      | 7  |
| 2.2.       | Pipe   | eline ADC Architecture                          | 8  |
| 2.2.       | 1.     | Identical Stages versus Scaled Stages in Power  | 9  |

| 2.2     | .2.   | 1.5-bit/Stage Architecture                         | 10 |
|---------|-------|----------------------------------------------------|----|
| 2.3.    | Pip   | eline Stage Non-Idealities                         | 13 |
| 2.3     | .1.   | Op-Amp DC Gain                                     | 14 |
| 2.3     | .2.   | Op-Amp Settling                                    | 15 |
| 2.3     | .3.   | Thermal noise                                      | 16 |
| 2.3     | .4.   | Comparator Offset                                  | 16 |
| 2.4.    | Cas   | e Study: ADA for 10 bits pipeline ADC              | 17 |
| 2.4     | .1.   | System Matlab/Simulink Model                       | 18 |
| 2.4     | .2.   | System and Single Stage Simulation Parameters      | 20 |
| 2.4     | .3.   | Non-Ideal System Simulation Results                | 21 |
| Chapter | 3 Cir | cuit Level ADA for Pipeline ADC                    | 24 |
| 3.1.    | Cha   | allenges of Simulating Analog Circuits in MATLAB   | 24 |
| 3.1     | .1.   | Implementing Device Model Equations                | 25 |
| 3.1     | .2.   | Implementing MATLAB - Circuit Simulator Interface. | 25 |
| 3.2.    | Ana   | alog Design Automation Techniques                  | 29 |
| 3.3.    | Sin   | nulation Factor (S-Factor) ADA Technique           | 31 |
| 3.4.    | Cas   | e Study (1): Folded Cascode Op-Amp                 | 34 |
| 3.4     | .1.   | Folded Cascode Op-Amp Operation                    | 34 |
| 3.4     | .2.   | Folded Cascode Op-Amp ADA                          | 35 |
| 3.4     | .3.   | Results Verification                               | 38 |
| 3.5.    | Cas   | e Study (2): Latched Comparator                    | 39 |
| 3.5     | .1.   | Latch Operation                                    | 40 |
| 3.5     | .2.   | Inverter Operation                                 | 43 |
| 3.5     | .3.   | Results Verification                               | 44 |
| Chapter | 4 Tra | unsistor Level ADA for Pipeline ADC                | 45 |
| 4.1.    | MC    | OSFET Model Equations                              | 46 |

| 4.2.      | Ve    | rification with Circuit Simulators    | 47 |
|-----------|-------|---------------------------------------|----|
| 4.3.      | BS    | IM3V3 Functions                       | 48 |
| 4.4.      | Re    | verse BSIM3V3 Functions               | 49 |
| 4.4       | .1.   | One Design Parameter Function         | 50 |
| 4.4       | .2.   | Two Design Parameters Function        | 51 |
| 4.5.      | CG    | GOST Tool                             | 51 |
| 4.5       | .1.   | CGOST Menus                           | 51 |
| 4.5       | .2.   | Calculator Capabilities               | 56 |
| 4.5       | .3.   | Grapher Capabilities                  | 57 |
| 4.5       | .4.   | Simple Optimizer Capabilities         | 58 |
| 4.5       | .5.   | Generated HTML Report Details         | 59 |
| Chapter   | 5 Pip | peline ADC ADA and Simulation Results | 61 |
| 5.1.      | Pip   | eline ADC ADA Flow                    | 61 |
| 5.2.      | 2-b   | its Flash ADC Circuit Schematic       | 63 |
| 5.3.      | 1.5   | bit/Stage Circuit Schematic           | 63 |
| 5.4.      | Fol   | ded Cascode Op-Amp Design Values      | 65 |
| 5.5.      | Sin   | nulation Results                      | 66 |
| Conclus   | ion a | nd Future Work                        | 69 |
| Reference | ces   |                                       | 71 |

List of Figures iv

# List of Figures

| Figure 1-1: ADC transfer characteristics non-idealities due to   | 4         |
|------------------------------------------------------------------|-----------|
| Figure 2-1: Pipeline ADC Architecture                            | 8         |
| Figure 2-2: 1.5-bit/Stage Architecture                           | 11        |
| Figure 2-3: Transfer Function of Residue Output Voltage          | 12        |
| Figure 2-4: 1.5 bit/Stage Architecture Implementation            | 13        |
| Figure 2-5: Implementation Transfer Function of Residue Output   | t Voltage |
|                                                                  | 13        |
| Figure 2-6: Finite op-amp DC gain effect on stage residue output | 15        |
| Figure 2-7: Effect of comparator offset in 1.5bit/Stage on       | transfer  |
| function                                                         | 17        |
| Figure 2-8: Complete 10 bits pipeline ADC                        | 18        |
| Figure 2-9: 1.5bit/Stage Model (Including non-idealities)        | 19        |
| Figure 2-10: S&H Simulink Model                                  | 19        |
| Figure 2-11: SUB-ADC Simulink Model                              | 19        |
| Figure 2-12: SUB-DAC Simulink Model                              | 20        |
| Figure 2-13: Op-Amp non-idealities Simulnik Model                | 20        |
| Figure 2-14: Non-Ideal System Transfer Function                  | 22        |
| Figure 2-15: Non-Ideal INL and DNL is within 0.5 LSB             | 22        |
| Figure 2-16: Non-Ideal frequency response for Fin=500KHz         | 23        |
| Figure 3-1: Block diagram describes MATSPICE operation           | 27        |
| Figure 3-2: Block diagram describes SPICE Data Converter         | 29        |
| Figure 3-3: The simulation correction factor                     | 32        |
| Figure 3-4: Automated S-Factor using MATSPICE                    |           |
| Figure 3-5: Folded Cascode On-Amn                                | 34        |

| Figure 3-6: ADA procedure for folded cascode op-amp           | 36       |
|---------------------------------------------------------------|----------|
| Figure 3-7: Latched Comparator Circuit                        | 40       |
| Figure 3-8: Latch Output at Voc+ and Voc-                     | 41       |
| Figure 3-9: Modeled Latch Stage                               | 42       |
| Figure 3-10: Inverter timing diagram                          | 43       |
| Figure 4-1: CGOST Tool Structure                              | 45       |
| Figure 4-2: File Menu                                         | 52       |
| Figure 4-3: Design Project Window                             | 52       |
| Figure 4-4: New Technology Window                             | 53       |
| Figure 4-5: New Device Definition Window                      | 54       |
| Figure 4-6: View Menu                                         | 55       |
| Figure 4-7: Tool Menu                                         | 55       |
| Figure 4-8: Main CGOST Window                                 | 55       |
| Figure 4-9: Operating Point Calculator                        | 56       |
| Figure 4-10: Operating Point Grapher                          | 57       |
| Figure 4-11: Operating Point Optimizer                        | 58       |
| Figure 4-12: Selection of Displayed Operating Point Functions | 59       |
| Figure 4-13: Information in the HTML Report                   | 60       |
| Figure 5-1: Pipeline ADC ADA flow                             | 62       |
| Figure 5-2: 2-bits Flash ADC circuit schematic                | 63       |
| Figure 5-3: SUB-ADC circuit schematic                         | 63       |
| Figure 5-4: SUB-DAC circuit schematic                         | 64       |
| Figure 5-5: 2XGain circuit Schematic                          | 64       |
| Figure 5-6: Sample and Hold phases circuit schematics         | 65       |
| Figure 5-7: 10 bits pipeline ADC INL and DNL using op-amp bel | naviroal |
| model                                                         | 66       |