

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Phase Transition and Physical Properties of the Glassy System Ge-Se-Te

Thesis
Submitted for the Degree of
Doctor of Philosophy in
Physics

Submitted

Shadia Ali El-Said

M.Sc in Physics

Faculty of Science Ain Shams University The state of the s

1997

Boch

The transfer of the :

إهداء

بواقر الود والعرفان اهدى هذا العمل لكل من:

الدكتور/ حسن رمضان وأولادى رانا وعمرو ووائل كما أهديه لوالدتى وذكرى أبى.

Acknoledgment

I would like to express my deep thanks and gratitude to Professor M.K. EL-Mously, for suggesting this work and his continual supervision and encouragement made the completion of this work possible.

I wish also to present my thanks to Dr. N.K. Mina for giving me the benefit of his experience and following up this work.

I wish to express my sincere thanks to Professor Abdel Moneim Shamah, Suez Chanal University for his cooperation in performing X-ray work.

I would like to thank Professor M. Sharkawy, Head of the Physics Department, for his interest, and encouragment during this work.

Abstract

Two binary systems Ge Se_{2.5} and Ge Te_{2.5} were first prepared, by direct fusion of elements, then were used to prepare the system $(Ge Se_{2.5})_{1-x}$ (Ge Te_{2.5})_x with $0 \le x \le 1$, by direct fusion under vacuum and quenching.

The vitreous state of resulting materials was confirmed by X-ray technique.

The density of the prepared glasses were determined by a hydrostatic method at room temperature. The data was fitted to a relation of the type

$$d = 4.223 + 1.67 \cdot 10^{-2}$$
 [Te], where Te is Te at. %.

The specific electrical conductivity σ of the vitreous materials was measured in the temperature range up to 150 °C, below the softening points.

The activation energy of conduction E_{σ} was found to fit the form:

$$E_{\sigma} = -0.9788 - 17.743 \ln \sigma_{20}$$

DSC thermograms were obtained at three different heating rates (10, 15 and 20 °C/min), for all glass systems. Three characteristic transitions could be identified which are due to softening $T_{\rm g}$, crystallization $T_{\rm p}$ and melting $T_{\rm m}$ processes.

DTA thermograms were obtained at different heating rates (5 to 40 °C/min) for all samples. The activation energy of crystallization E_c were calculated using four different approaches:

i- Augis and Bennett, ii- Ozawa-Chen, iii- Takhor and iv-Kissinger methods.

		,	
•			

The order of crystallization was obtained on basis of two different methods. Ozawa method and a method, from the χ_p value.

To examin the state of crystallization the samples were left to crystallize at the highest T_p for arround (7 hrs). X-ray diffraction studies were done on powdored samples.

The results were compared with those reported in litrature