

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ECE DEPARTMENT

Thesis Title

Low Power Constellation De-mapping Design for DVB-T2 Standard

A thesis submitted in partial fulfilment of the requirement of the M.Sc. in Electronics and Communication Engineering

by

Nourhan Mohamed Mohamed Bahgat

BSc. Degree, 2010

Supervised by

Prof. Dr. Salwa Hussein El-Ramly Dr. DiaaEldin S Khalil

Cairo-(2015)

STATEMENT

This thesis is submitted as partial fulfillment of M.Sc. degree in Electronics and Communication Engineering, Faculty of Engineering, Ain Shams University.

The Author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Signature

Nourhan Mohamed Mohamed Bahgat

Researcher Data

Name : Nourhan Mohamed Bahgat

Date of birth : 7th November 1988

Place of birth : Cairo - Egypt

Academic Degree : BSc. Degree

Field of specialization : Electronics and Communication Engineering

University issued the degree: Higher Technological Institute 10th of

Ramadan City

Date of issued degree : August 2010

Current Job : Cairo area Operation Manager at PCM

Company for Communication Subcontractors

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Thesis Title Low Power Constellation De-mapping Design for BVB-T2 Standard

By Nourhan Mohamed Bahgat

B.Sc. in Electronics and Communication Engineering Faculty of Engineering - Higher Technological Institute

EXAMINERS COMMITTEE

Signature

1 (63312)	
Prof. Salwa Hussein El-Ramly	
(ECE Department – Ain Shams University)	
Prof. Hani Fikry Ragai	
(ECE Department – Ain Shams University)	
Prof. Khaled Ali Shehata	
(ECE Department – Arab Academy for Scien	ce and Technology)
Date:	//

Name

Abstract

Digital video broadcasting for terrestrial transmission is a new trend expanding quickly worldwide. It has been adopted by 150 countries including Egypt where it is planned to be deployed in 2015. The second generation terrestrial digital video broadcasting standard (DVB-T2) is the most advanced digital terrestrial television system, offering significant improvements in spectral efficiency, in addition to more robustness and flexibility compared to any prior system. It also supports SD, HD, UHD, and mobile TV.

This thesis is mainly focused on a new low-power implementation of the DVB-T2 de-mapper. One of the introduced advancements in DVB-T2 is the use of signal space diversity (SSD) to improve system performance in frequency selective terrestrial channels. This concept is implemented through the use of rotated constellation and Q-delay. Yet, the de-mapping proposed in the DVB-T2 standard is based on computing the Log-Likelihood-Ratios (LLRs) for all bits, which does not use the uniqueness of the I and Q components (projections) of the rotated constellation points. Prior-art in DVB-T2 demapper design attempted to reduce power through reduction of the complexity in LLR calculations by limiting the set of points included in LLR calculation and approximating the Euclidean distance calculation. On the other hand, the proposed low-power de-mapper design of this work attempts to employ the introduced SSD to reduce power through replacing LLR calculations by a significantly less complex projection-based demapping whenever possible. It benefits from an algorithm that applies projection-based de-mapping to significantly reduce LLR computations without deteriorating performance. The proposed design also attempts to reduce power through clock-gating, Euclidean distance approximation, statistical approximations, and hardware optimization and pipelining. Two versions are introduced for hard de-mapping and soft de-mapping.

The design prototype is implemented on Vertix-II pro FPGA (XC2VP30). The prototype uses significantly less resources compared to prior-art even with the soft de-mapper version that includes statistical calculations. Simulation results of BER performance clearly indicate better performance compared to prior-art that limited the set of points included LLR calculation. They also indicate significant reduction of calculations as signal to noise ratio increases with no performance degradation. The proposed design will be highly useful in low power DVB-T2 receivers. The power saving techniques can be easily applied to any rotated constellation de-mapper.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communication Engineering Department

SUMMARY

In this thesis, a new low power implementation design of the DVB-T2 demapper is proposed. This design is used to reduce power by seamless calculations. This design uses Signal Space Diversity (SSD) to improve system performance in frequency selective terrestrial channels which implemented through the use of rotated constellation and Q-delay. The proposed low-power de-mapper design of this work attempts to employ the introduced SSD to reduce power through replacing LLR calculations by significantly less complex projection-based de-mapping whenever possible without deteriorating performance. The proposed design also attempts to reduce power through clock-gating, Euclidean distance approximation, statistical approximations, and hardware optimization and pipelining. Two versions are introduced for hard de-mapping and soft de-mapping. The design prototype is implemented on Xilinx Vertix-II pro FPGA (XC2VP30) and Xilinx Spartan-3 FPGA starter kit (XC3S200). This thesis consists of six chapters.

Chapter 1 gives overview on DVB-T2 system and describes its blocks.

Chapter 2 reviews the background to digital modulation specially DVB-T2 modulation, Signal Space Diversity (SSD), importance of rotated constellation, channel coding/decoding for non-rotated constellation and rotated constellation.

Chapter 3 presents prior work in de-mapper design and the proposed design of DVB-T2 rotated constellation de-mapper. It shows several techniques which used simultaneously in new design to be even more efficient. The proposed design presented, prototyped by VHDL, and the simulation results use Modelsim and Matlab to compare between the performance of the traditional technique and the proposed technique.

Chapter 4 presents modification on new de-mapper design. It presents two algorithms depend on statistical assignment to guarantee the best performance of the LDPC decoder. The modification design presented, prototyped by VHDL and the simulation results use Modelsim.

Chapter 5 presents hardware implementation procedure to build experiment with Xilinx embedded processor called MicroBlaze.

Finally, chapter 6 suggests the future work and introduces the thesis's conclusion.

Acknowledgements

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

First and foremost, I offer my deepest sincerest gratitude to my supervisors, **Prof. Salwa H. El-Ramly** and, **Dr. DiaaEldin S. Khalil**, who were endless sources of advice and direction and I thank them for their intensive help, valuable advice, constant effort, patience, and their continuous encouragement throughout the whole MSC thesis, simply could not wish for better or friendlier supervisors.

I cannot forget the important remarkable role that **Prof.Talaat Abd El-Latief El-Garf** has played it in my life throughout knowing him and his serious efforts and permanent support whenever I need.

I would also like to thank **Dr.Mona Zakareya**, **Dr. Bassant Abd El-Hameed**, **Dr.Ahmed Zaki** and **Eng.Amr El-Dieb** for their advices and their friendly assistance with various problems all the time.

Finally, without my family; much of this would not have been possible. A special thanks to my family. Words can't express how grateful I am to my parents and brothers for all of the sacrifices that you've made on my behalf to accomplish this thesis. Your sustained prayer helped me to strive towards my goal.

Nourhan M. Bahgat May, 2015 Cairo, Egypt

LIST OF ABBREVIATIONS

AM Amplitude Modulation

ACE Active Constellation Extension

ASK Amplitude Shift Keying

BICM Bit Interleaved Coding and Modulation

BCH Bose Chaudhuri Hocquengham

BER Bit Error Rate

BSB Base System Builder

DVB Digital Video Broadcasting

DVB-S Digital Video Broadcasting Satellite

DVB-C Digital Video Broadcasting Cable

DVB-T Digital Video Broadcasting Terrestrial

DVB-T2 Digital Video Broadcasting Terrestrial second generation

 E_b/N_0 Energy per bit to Noise power spectral density ratio

EDK Embedded Development Kit

FFT Fast Fourier Transform

FEC Forward Error Correction

FM Frequency Modulation

FSK Frequency Shift Keying

F/F Flip Flop

FPGA Field Programmable Gate Array

GS Generic Stream

HD High Definition

HNM High Efficiency Mode

I In-phase component

ISSY Input Stream Synchronizer

LLR Log Likelihood Ratio

LUT Look Up Table

LDPC Low Density Parity Check

MISO Multiple Input Single Output

ML Max Log approximation

M Mean

NM Normal Mode

OFDM Orthogonal Frequency Division Multiplexing

PARP Peak to Average Power Ratio

PM Phase Modulation

PSK Phase Shift Keying

PLP Physical Layer Pipes

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

Q Quadrature component

RAM Random Access Memory

RQD Rotated constellation and Q-Delay

SD Standard-Definition

SSD Signal Space Diversity

SNR Signal to Noise Ratio

TS Transport Stream

TR Tone Reservation

UHD Ultra High Definition

V Amplitude

XPS Xilinx Platform Studio

LIST OF SYMBOLS

f	Frequency	
c	Empirical scaling factor	
θ	Phase	
σ^2	Noise variance	
σ	Standard deviation	

Publications

- Nourhan Bahgat, DiaaEldin Khalil, Salwa El-Ramly. "Energy Efficient Design of DVB-T2 Constellation Demapper." IEEE 16th International Symposium on Quality Electronic Design (ISQED), March 2015.
- Nourhan Bahgat, DiaaEldin Khalil, Salwa El-Ramly. "Modification on Energy Efficient Design of DVB-T2 Constellation Demapper." Journal to be published

Chapter 1

DVB-T2 Overview

The switch from analogue to digital broadcast systems is a trend in Television (TV) broadcast as the technology rapidly evolves. Many countries have started terrestrial digital TV broadcast and plan to end analogue broadcasts after some years. The move to digital broadcast system provides more information capacity, compatibility with digital data services, higher data security, better quality communications and quicker system availability [1].

1.1 **DVB-T**

The Digital Video Broadcasting (DVB) project has developed digital broadcasting system specifications which have been adopted worldwide. The family of DVB standards include DVB-S for satellite, DVB-C for cable and DVB-T for terrestrial system. The DVB-T system has proven its capability and thus is accepted as the standard for terrestrial system in most countries. DVB-T2 is the enhancement of DVB-T that will overcome the shortcomings of the previous standard and provide additional features.

DVB-T uses terrestrial as medium; transmits data using compressed digital audio-video stream, via the entire process, based on the MPEG-2 standard. This is a vast improvement over the ancient analogue signals that required separate streams of transmission. The DVB-T2 standard increases the spectral efficiency and adds new services over DVB-T [2]. Table 1.1 lists the main differences between DVB-T and DVB-T2.

Table 1. 1 The main differences between DVB and DVB-T2 [2]

Features	DVB-T	DVB-T2
FEC	Convolution Code + RS (1/2, 2/3,3/4 5/6, 7/8)	LDPC + BCH (1/2, 3/5, 2/3, 3/4, 4/5, 5/6)
Modulation	QPSK,16QAM,64QAM	QPSK, 16QAM, 64QAM, 256QAM rotated or non
FFT size	2K, 8K	2K, 8K, 1K, 4K, 16K, 32K
Guard Interval	1/4, 1/8, 1/16, 1/32	1/4, 1/8, 1/16, 1/32, 19/256, 19/128, 1/128
Bandwidth	5, 6, 7, 8 MHz	5, 6, 7, 8, 1.712, 10 MHz
Scattered Pilots	8% of total	1%, 2%, 4%, 8% of total
Continual Pilots	2.6% of total	0.35% of total

1.2 DVB-T2

Fig.1.1 illustrates a block diagram of a DVB-T2 system. The DVB-T2 physical layer introduces new techniques as shown in table 1.1. In order to provide more flexibility in terms of transmission robustness, capacity and more set of configuration options is possible. This system transmits compressed digital audio, video, and other data in "physical layer pipes" (PLPs), using OFDM modulation with concatenated channel coding and interleaving. DVB-T2 introduces the utilization of PLPs in order to achieve per service robustness.

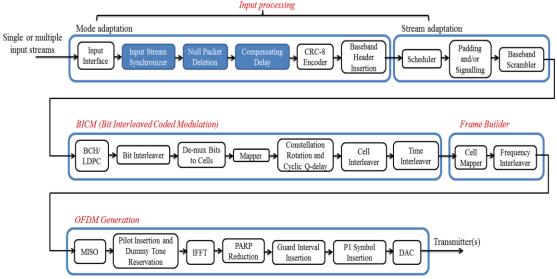


Fig.1. 1 The block diagram of DVB-T2 transmitter [2]