Relation of cardiovascular disease to acute phase reactants in chronic haemodialysis patients

Submitted for partial fulfillment of master degree in Internal Medicine

Presented by Marwa Abdelsalam Basyuoni

Under supervision of

Prof.Mohammed Ali Ibrahim

Professor of Internal Medicine and Nephrology Ain Shams University

Dr.Essam Nour Eldin Afify Lecturer of Internal Medicine and Nephrology Ain Shams University

Dr.Ossama Kamal Mohammed
Elnabarawy
Lecturer of Internal Medicine and
Nephrology
Ain Shams University

Faculty of Medicine Ain Shams University 2008

Introduction and

Introduction

A growing awareness of heart disease in individuals with kidney disease as a major public health concern has increased sharply because of the revelation that there are millions of Americans with reduced kidney function (Berl et al., 2006).

This fact coupled with the understanding that many individuals with CKD don't reach dialysis because they die of heart disease, has expand the concern about heart disease in both patients with CKD and patients with ESRD (**Keith et al., 2004**).

Heart disease is leading cause of death in approximately half of patients with ESRD (USRDS, 2004).

The two clinical presentations of heart disease in patients with kidney disease are atherosclerotic vascular disease (particularly CAD) and left ventricular hypertrophy (Berl et al., 2006).

Inflammation has recently been associated with atherosclerosis and malnutrition in ESRD, and this link has led to the development of malnutrition, inflammation, atherosclerosis (MIA) hypothesis. This describes a syndrome whereby raised levels of pro-inflammatory cytokines (such as IL-1, IL-6 and TNF- α) are a common link between malnutrition, inflammation, and atherosclerosis (Stenvinkel , 2001).

Also anaemia appears to be an important element linking elevated cytokines levels with poor patient outcomes. Several mechanisms for cytokine-induced anaemia have been proposed, including intestinal bleeding, impaired iron metabolism and suppression of bone marrow erythropoiesis and erythropoietin production (Stenvinkel, 2001).

A newly identified iron regulator, hepcidin, appears to communicate body iron status and demand for erythropoiesis to intestine, and in turn, modulates intestinal iron absorption. Hepcidin was first purified from human blood and urine as anti microbial peptide and was found to be predominantly expressed in the liver. A lack of hepcidin expression has been associated with iron overload and over-expression of hepcidin results in iron-deficiency anaemia in mice. These observations support the role of hepcidin as a signal that limits intestinal iron absorption. Hepcidin expression is also affected by hypoxia and inflammation and is decreased in hemochromatosis patients (Nutr. 2004).

In the recent report, Wrighting and Andrews showed that the inflammatory cytokine IL-6 directly regulated hepcidin through induction and subsequent promoter binding of signal transducer and activator of transcription 3(STAT3) (**Wrighting et al., 2006**).

Hepcidin is consistent with type II acute phase protein (Nemeth et al., 2003).

Aim of work

The aim of this work is to assess the possible relation between acute phase reactants including hepcidin as acute phase reactant type II and cardiovascular morbidity in chronic haemodialysis patients.

بسوالله الرحمن الرحيم المرحيم الله يبعل له معند الله يبعل له معند الرحسة لا يحتسب عدت الله العظيم عدت الله العظيم

Acknowledgement

Thanks to Allah for the strength and insistence that I was given during the achievement of this work.

I have been honored to have **Prof**. **Dr**. **Mohammed Ali Ibrahim**, Professor of internal Medicine and nephrology, Ain

Shams University to be

my supervisor; His kind supervision, guidance and support were indispensable all through the work.

I would also like to express my thanks to **Dr**. **Essam Nour Eldin Afify**, Lecturer of internal medicine, Ain Shams University, for his indispensable guidance and advice; his expert touches.

I want to express my deep thanks to **Dr. Ossama Kamal Mohammed Elnabarawy**, Lecturer of internal Medicine, Ain
Shams University, for his great supervision, constructive
criticism, and for offering me advice and help whenever needed.

Contents

Title	
Introduction and Aim of the work	
Review of Literature:	
Cardiovascular Disease in ESRD	5
Role of anaemia in cardiovascular disease	14
Hepcidin	23
Role of inflammation in CVD in ESRD	39
Subjects and methods	
Results	
Discussion	
Summary	
Conclusion	
Recommendation	
References	
Arabic Summary	

Tables

No	Title	Page
Tab 1a	Biochemical data of patients	65
Tab 1b	Descriptive data of patients	66
Tab 2a	Clinical data of control group	67
Tab 2b	Biochemical data of control group	68
Tab 3	ESR subgroups in patients	69
Tab 4	hsCRP risk categories in patients	70
Tab 5	Hepcidin subgroups in patients	71
Tab 6	Albumin categories in patients	72
Tab 7	Ferritin subgroups in patients	73
Tab 8	Hematological parameters of patients in comparison to control	75
Tab 9	lipid profile of patients in comparison to control group	76
Tab 10	Acute phase reactants of patients in comparison to control group	77

No	Title	Page
Tab 11	iron and TIBC levels of patients in comparison_to control group	79
Tab 12	clinical data of patients with ECG with problems.	80
Tab 13	Hematological parameters of patients with abnormal ECG (Group I) in comparison to patients with normal	81
Tab 14	Acute phase reactants in group (I) in comparison to group (II	82
Tab 15	Descriptive data of patients with abnormal ECHO	84
Tab16	Haematological parameters of group (I*) in comparison with group (II*).	85
Tab17	Acute phase reactants of group (I*) in comparison to group (II*).	86
Tab18	Descriptive data of group (1): free both ECG, ECHO	87
Tab19	Descriptive data of group (2):abnormal either ECG or ECHO	88
Tab20	descriptive data of group (3) :abnormal both ECG and ECHO	88

Tab21	comparison between the three patient groups (1), (2) and (3) as regard hemoglobin level_	89
Tab22	comparison between the three patient groups (1), (2) and (3) as regard hepcidin level.	90
Tab23	comparison between the three patient groups (1), (2) and (3) as regard HsCRP	91
Tab24	comparison between the three patient groups (1), (2) and (3) as regard ESR	92
Tab25	comparison between the three patient groups (1), (2) and (3) as regard Ferritin	93
Tab26	comparison between the three patient groups (1), (2) and (3) as regard albumin	94
Tab 27	Descriptive data of patients with abnormal ECG (N=12).	97
Tab 28	Descriptive data of patients with abnormal ECHO(N=18).	98

Figures

No	No Title	
Fig 1	Sex distributions in patients	63
Fig 2	ESR categories in patients	70
Fig3	HsCRP risk categories in patients	71
Fig4	Hepcidin subgroups in patients	72
Fig 5	Albumin subgroups in patients	73
Fig 6	Ferritin categories in patients	74
Fig 7	Hematological parameters of patients in comparison to control	76
Fig 8	lipid profile of patients in comparison to control	77
Fig 9a	acute phase reactants(ESR, HsCRP, Alb) of patients in comparison to control.	78
Fig 9b	acute phase reactants (Hepcidin and Ferritin) of patients in comparison to control.	78
Fig 10	Type of ventricular dysfunction in patients with abnormal echocardiography	83
Fig 11	comparison between patient groups (1), (2) and (3) as regard Hb level.	89

Fig 12	comparison between patient groups (1), (2) and (3) as regard hepcidin level.	90
Fig 13	comparison between patient groups (1), (2) and (3) as regard HsCRP.	91
Fig 14	comparison between patient groups (1), (2) and (3) as regard ESR.	92
Fig 15	comparison between patient groups (1), (2) and (3) as regard serum ferritin	93
Fig 16	comparison between patient groups (1), (2) and (3) as regard serum albumin	94
Fig 17	ECG result in patients(N=30).	95
Fig 18	Type of ECG abnormality in patients with abnormal ECG (N=12).	96

LIST OF ABBREVIATIONS

AHA	American heart association	
CKD	Chronic kidney disease.	
CVD	Cardiovascular disease	
CV	Cardiovascular	
CHD	Chronic haemodialysis.	
CRP	C reactive protein	
CAD	Coronary artery disease	
CRF	Chronic renal failure.	
CSF	Cerebro spinal fluid.	
CDC	Centers of disease control	
C/EBP	Ccaa/enhancer binding protein	
DPG	Di phosphoglycerate	
ESRD	End stage renal disease	
ECG	Electro cardio gram.	
ЕСНО	Echo cardiography.	
ESR	Erythrocyte sedimentation rate.	
FBS	Fasting blood sugar	
GFR	Glomerular filtration rate	
Hgb	Haemoglobin.	
HsCRP	Highly sensitive C reactive protein.	
HD	Haemodialysis.	
HDL		
HAMP	Hepcidin anti microbial peptide gene	
HFE		
HIF		
IHD		
LVH	YH Left ventricular hypertrophy	
LV	Left ventricle.	
LDL	Low density lipoprotein.	
LVMI	Left ventricular mass index.	
MIA	Malnutrition, inflammation, atherosclerosis.	
PTH	Para thyroid hormone	
RT-PCR	Reverse transcription PCR.	
STAT3	Signal transducer and activator of transcription 3	
TSAT	Transferrine saturation.	
TNF	Tissue necrosis factor	
TIBC	Total iron binding capacity	
TG	Triglyceride	