

شبكة المعلومات الجامعية

To Van







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



(أ) شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



## يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ١ - - ١٠ مئوية ورطوبة نسبية من ٢٠ - ١٠ % To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



بعض الوثائق

الإصلية تالفة

Thom one deads

CASUNET O ASUNET



بالرسالة صفحات لم

ترد بالإصل

## Physiological Role of Fenugreek Seeds as Biological Control for Tomato Wilt Disease.

#### **THESIS**

Submitted in Partial Fulfillment of
Requirement for the Degree of Master of
Science in Botany
(M.Sc.)
(Plant Physiology)

By

#### Mahmoud Madany Yousif Madany

B.Sc. (2003)

Botany Department, Faculty of Science, Cairo University

XNY B.

(2009)

#### APPROVAL SHEET

Title of the M.Sc. Thesis

# Physiological Role of Fenugreek Seeds as Biological Control for Tomato Wilt Disease.

#### Name of the Candidate

Mahmoud Madany Yousif Madany

Submitted to Botany Department, Faculty of Science, Cairo University

#### Supervision Committee

Prof.Dr. Maimona A. Kord

Professor of Plant Physiology, Botany Department, Faculty of Science, Cairo University.

Prof. Dr. Shahnaz A. M. Al-Wakeel

Professor of Plant Physiology, Botany Department, Faculty of Science,

Cairo University.

Prof. Dr. Mohamed Hani Moubasher

Professor of Microbiology, Botany Department, Faculty of

Cairo University.

Prof.Dr. Effat Shabana

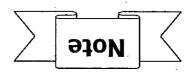
Head of the Botany Deptartment., Faculty of Science,

Cairo University.

6-7-200

Al-Wakeel

### Prof.Or. Effat Shabana


#### insmindsD shi to bash

sernaied courses.

иі иоізриішьхэ иэттіч в bəssaq Vilufssəssus bah эн

|                          | 6. Analytical Chemistry.   |  |  |  |
|--------------------------|----------------------------|--|--|--|
| 11. German Language.     | . noitoluggp Atword .e     |  |  |  |
| .01 Nitrogen Fixation.   | 4. Plant Mineral Nutrition |  |  |  |
| 9. Plant Tissue Culture. | 3. Plant Water Kelations.  |  |  |  |
| . Redoidoibast .8        | 2. Епгутогоду.             |  |  |  |
| 7. Giostatistics.        | 1. Biochemistry.           |  |  |  |
| Subject                  |                            |  |  |  |

A part from the work, carried out in this thesis, sissant in the four sess for solidate courses for one academic year covering the following topics:



# DEDICATION

- ✓ This thesis is dedicated to my family, my wife and my daughter Mariam.
- ✓ Also a special dedication to my supervisor Prof. Dr. Shahnaz A. M. Al-Wakeel for her help, guidance and support.

## ACKNOWLEDGEMENTS

First of all, 9'd like to thank ALLAH Almighty, without his mercy and guidance this work would never been started nor completed.

Second, I wish to acknowledge with deep gratitude and great regards

Prof. Dr. Maimona A. Kord

Professor of Plant Physiology, Botany Department, Faculty of Science, Cairo University for her encouragements and help her offers to complete this work.

With many thanks, I am also indebted to Prof. Dr. Shahnaz A. M. Al-Wakeel

Professor of Plant Physiology, Botany Department, Faculty of Science, Cairo University for her supervising this work and for her critical comments and guidance during preparation this thesis and her unlimited consistent advises she offered in most of the aspects presented through this work,

I also would like to express my thanks and gratitude to **Prof. Dr. Mohamed Hani Moubasher** 

Professor of Microbiology, Botany Department, Faculty of Science, Cairo University for his direct supervision and scientific support.

Finally, I hope to extend my thanks to all my colleagues specially my dear friend Ahmad M. Saleh

#### Contents

| ABSTRACT                                             |    |
|------------------------------------------------------|----|
| INTRODUCTION                                         | 01 |
| AIM OF THE WORK                                      |    |
| MATERIALS AND METHODS                                | 17 |
| I. PLANT MATERIALS                                   | 17 |
| 1. Preparation of Fenugreek Seed Extract             | 17 |
| 2. Preparation of Spore Suspension                   | 18 |
| II. PRELIMENARY EXPERIMENT                           | 18 |
| III. GREENHOUSE POT EXPERIMENT                       | 18 |
| 1. Growth Measurements                               | 20 |
| 2. Photosynthetic Pigments                           | 20 |
| IV. BIOCHEMICHAL ANALYSES                            | 22 |
| 1. Phenolic Analysis                                 | 22 |
| 1.1. Extraction of phenolic compounds                | 22 |
| 1.2. Determination of phenolic contents              | 22 |
| 2. Nitrogen and Phosphorus Analyses                  | 23 |
| 2.1. Extraction of Total Nitrogen and Phosphorus     | 23 |
| 2.2. Extraction of Soluble Nitrogen and Phosphorus   | 23 |
| 2.3. Hydrolysis of Insoluble Nitrogen and Phosphorus | 24 |
| 2.4. Determination of Total Free Amino Acid Content  | 24 |

|    |              | 2.5. Determination of Nitrogen Content        | 25   |
|----|--------------|-----------------------------------------------|------|
|    |              | 2.6. Determination of Phosphorus Content      | 26   |
|    | 3.           | Nucleic Acids and Crude Protein Analyses      | . 26 |
|    |              | 3.1. Extraction of Nucleic Acids and Proteins | . 26 |
|    |              | 3.2. Determination of RNA                     | 27   |
|    |              | 3.3. Determination of DNA                     | 28   |
|    |              | 3.4. Determination of Crude Proteins          | 28   |
|    | 4.           | Defense-Related Enzymes                       | 29   |
|    |              | 4.1. Extraction and Assay of Peroxidase       | 29   |
|    |              | 4.2. Isozyme Pattern of Peroxidase            | 30   |
|    |              | 4.3. Extraction and Assay of β-1,3-Glucanase  | 30   |
|    | 5.           | HPLC Analysis                                 | 32   |
|    | 6.           | Statistical Analysis                          | . 33 |
| R. | ESU          | ULTS                                          | 34   |
| I. | $\mathbf{G}$ | ROWTH CRITERIA OF TOMATO PLANTS               | . 34 |
|    | 1.           | Root Growth Criteria                          | .34  |
|    | 2.           | Shoot Growth Criteria                         | 42   |
|    | 3.           | Photosynthetic Pigment                        | 50   |
| II | . BI         | OCHEMICAL ANALYSES                            | 58   |
|    | 1.           | Phenolic Contents                             | 59   |
|    |              | 1.1. Root Phenolics                           | .59  |
|    |              | 1.2. Shoot Phenolics                          | .67  |

| 2. Nitrogen Compounds                        | 72  |
|----------------------------------------------|-----|
| 3. Total Free Amino Acids and Crude Proteins | 80  |
| 4. Defense-Related Enzymes                   | 88  |
| 5. Isozyme Pattern of Peroxidase             | 92  |
| 6. Phosphorus Components                     | 94  |
| 7. Nucleic Acids Components                  | 98  |
| III. PHENOLIC PROFILE OF FENUGREEK SEED      | 106 |
| DISCUSSION                                   | 110 |
| REFERENCES                                   | 130 |
| SUMMARY                                      | 151 |
| ARABIC SUMMARY                               | 155 |

## List of Tables

| No. | Title                                                                                                                                                                                      | Page |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1-a | Effect of different treatments of fenugreek seed on the root growth criteria of tomato plants during various growth stages.                                                                | 35   |
| 1-b | Analysis of variance of fenugreek seed treatments on the root growth criteria of tomato plants during the experimental time.                                                               | 36   |
| 2-a | Effect of different treatments of fenugreek seed on the root growth criteria of healthy and infected tomato plants (60-day-old).                                                           | 39   |
| 2-b | Analysis of variance of fenugreek seed treatments on the root growth criteria of healthy and infected tomato plants (60-day-old).                                                          | 40   |
| 3-a | Effect of different treatments of fenugreek seed on the shoot growth criteria of tomato plants during various growth stages.                                                               | 43   |
| 3-b | Analysis of variance of fenugreek seed treatments on the shoot growth criteria of tomato plants during the experimental time.                                                              | 44   |
| 4-a | Effect of different treatments of fenugreek seed on the shoot growth criteria of healthy and infected tomato plants (60-day-old).                                                          | 47   |
| 4-b | Analysis of variance of fenugreek seed treatments on the shoot growth criteria of healthy and infected tomato plants (60-day-old).                                                         | 48   |
| 5-a | Effect of different treatments of fenugreek seed on photosynthetic pigment contents (mg g <sup>-1</sup> fresh weight) in the shoot of tomato plants during various growth stages.          | 51   |
| 5-b | Analysis of variance of fenugreek seed treatments on the photosynthetic pigments in tomato shoot during the experimental time.                                                             | 52   |
| 6-a | Effect of different treatments of fenugreek seed on the photosynthetic pigment contents (mg g <sup>-1</sup> fresh weight) in the shoot of healthy and infected tomato plants (60-day-old). | 55   |

56 6-b Analysis of variance of fenugreek seed treatments on photosynthetic pigments in the shoot of healthy and infected tomato plants (60-day-old). Effect of different treatments of fenugreek seed on the phenolic **60** 7-a content (mg g<sup>-1</sup> dry weight) in the root of tomato plants during various growth stages. Analysis of variance of fenugreek seed treatments on the root phenolic 7-b 61 content in tomato plant during the experimental time. 64 Effect of different treatments of fenugreek seed on the phenolic content 8-a (mg g-1 dry weight) in the root of healthy and infected tomato plants (60-day-old). Analysis of variance of fenugreek seed treatments on the root phenolic 65 8-b content of healthy and infected tomato plants (60-day-old). 68 Effect of different treatments of fenugreek seed on the phenolic content 9-a (mg g<sup>-1</sup> dry weight) in the shoot of tomato plants during various growth stages. Analysis of variance of fenugreek seed treatments on the shoot 69 9-bphenolic content of tomato plants during the experimental time. 74 Effect of different treatments of fenugreek seed on the phenolic content 10-a (mg g<sup>-1</sup> dry weight) in the shoot of healthy and infected tomato plants (60-day-old). Analysis of variance of fenugreek seed treatments on the shoot 75 10-b phenolic content of healthy and infected tomato plants (60-day-old). Effect of different treatments of fenugreek seed on the contents of 77 11-a nitrogen components (mg g<sup>-1</sup> dry weight) in the shoot of tomato plants during various growth stages. Analysis of variance of fenugreek seed treatments on the nitrogen 78 11 - bcomponents in the shoot of tomato plants during the experimental time. 81 Effect of different treatments of fenugreek seed on the contents of total 12-a free amino acids and crude protein in the shoot of tomato plants during various growth stages. Analysis of variance of fenugreek seed treatments on the contents of 82 12-b total free amino acids and crude protein in the shoot of tomato plants

during the experimental time.